

kernel: build system outputs and
workflows (and how to balance them)

Bruce Ashfield, AMD

The kernel as part of a build system

Can’t keep everyone happy at
the same time!

… but yet we try!

The foundation and pillars ...

reprod
ucibility

flexibility
maintenance

&
support

image
 creation

&
build

speed

debug

source (vendor, upstream, BSP), patches, configuration, tools …

kernel, modules, dtbs, userspace configuration, firmware, debug, SBoM, CVE …

images, boot components,
tools, utilities, containers/VMs …

config

versions, release cadence, support duration

● ins:
■ source
■ configuration & policy
■ security (keys, etc)

● outs:
■ kernel and supporting binaries
■ boot artifacts (scripts,device tree,firmware)
■ packages and images
■ traceability / licensing / dbug / SBoM / CVE

The ins and outs (high level) …

● Tightly coupled components
● compiler / libc headers
● tools (lttng, perf, systemtap .. etc)

● SDK / build artifacts
● shared kernel source

● Containers, VMs, unikernels
● Out of tree modules, depmod

The extras ...

● Release / loadbuild / production
● Developer: kernel, userspace

○ build -> debug
● Integrator
● Distributor
● Community member / Contributor

Personas / Workflows ...

Is there a primary persona / target ?

● Flexible provider model (virtual/kernel)
■ source, patches, configuration, etc
■ Presents challenges (many versions, different

support, varied source / patch, tools)
● Multiple output types

■ kernel (multiple formats: simple or complex)
■ initramfs, images
■ signed, unsigned
■ kernel modules are separately packaged

The kernel in Open Embedded

What about a reference ?

● Release cadence and explicit version testing
● Drives kernel workflows

● bitbake/OE core support
● Launching point for production / commercial offerings
● Vertical / specific configurations testing

● -rt, -tiny, -standard, developer, k.org
● Configuration / extension model
● Collection point of contributed BSPs
● Support the validation / testing of the ecosystem: tightly

coupled packages, uapi, libc, containers, etc

The Yocto / OE reference kernel

Find and fix the ‘hard to solve problems’

The reference kernel: build flow
kernel-cache

(kmeta)

kernel source + in
tree defconfigs

(linux-yocto)

recipe-space config
(SRC_URI,

KERNEL_FEATURES)

patches

kernel_
metadata

config.queue

patch.queue patch
(patch + merge)

.patch, .cfg, .scc

.patch

kernel_configme
(merge_config.sh++)

kernel_configcheck

.config

compile …

package…
defconfig

kernel source

.patch, .cfg, .scc

● (infinite) different entrenched workflows …
● configure, build, deploy, boot, debug
● patch and source management ..

● Many different trees (it’s a forest!)
● hundreds of BSPs .. how to EOL?
● version expansion!

● Inconsistent quality and testing
● Support / security updates

Challenges (open questions!) …

● Many different ways the kernel can be consumed
● SDK ? binary ?
● where can the kernel be rebuilt ?
● reference only or production ready ?

● Which use cases to optimize ?
● Is build performance important ?

● New requirements: rust …
● Are tools provided ?
● What is “standard” packaging ?

More Challenges …

● Offer workflows, but don’t mandate them
■ Includes source management
■ Almost any overhead is “too much”
■ Those that want to adopt it … will

● Provide flexibility, but focus testing on a reference
■ i.e: embedded, enterprise, hobby .. etc)

● Do no prematurely optimize a use case
● Provide a reference to gather momentum / resist

fragmentation
■ Document!! (support model, lifespan, updates, etc)

Thoughts (not answers!) …

● Enhanced testing (we’ve found some unique issues)
○ More kernel specific on-target testing
■ kselftest, stress tests, etc

○ stress testing
○ additional kernel type testing (-rt, -dev)

● New Architectures
● Binary Reference Kernels
● Expand boot testing coverage
○ more hardware targets
○ more image types

● Streamline developer workflows
● Performance tracking

OE kernel .. what’s next ...

