
Improving resource
ownership and life-time in
linux device drivers

Bartosz Golaszewski
Linux Plumbers Conference 2023, Richmond VA

About
- Linux kernel developer for the Qualcomm Landing Team at Linaro
- 15 years of experience
- Maintainer of the GPIO subsystem
- Author and maintainer of libgpiod
- Interested in complex software architecture

Background
● Laurent Pinchart at Linux Plumbers 2022

“Why is devm_kzalloc() harmful and what can we do about it”
https://www.youtube.com/watch?v=kW8LHWlJPTU

● Bartosz Golaszewski at FOSDEM 2023
“Don't blame devres - devm_kzalloc() is not harmful
Use-after-free bugs in drivers and what to do about them.”
https://archive.fosdem.org/2023/schedule/event/devm_kzalloc/

● Wolfram Sang at EOSS 2023
“Subsystems with Object Lifetime Issues (in the Embedded
Case)”
https://www.youtube.com/watch?v=HCiJL7djGw8

https://www.youtube.com/watch?v=kW8LHWlJPTU
https://archive.fosdem.org/2023/schedule/event/devm_kzalloc/
https://www.youtube.com/watch?v=HCiJL7djGw8

Background
● Using devres seemed to cause memory problems
● It’s not really devres
● Drivers embed reference counted struct device objects within

private data structures that are freed at driver detach
● Subsystems proceed to implement the wildest workarounds to not

crash or just give up and outright explode if a driver is detached with
references to struct device still held

● This problem is at least 18 years old and fixing it is hard

Agenda

Agenda
● More stuff is broken

Glossary
● Resource - software representation of some hardware asset, e.g.

regulator, nvmem cell, GPIO, clock, interrupt, reset
● Resource handle - concrete software data structure associated with

an instance of a resource, e.g.: struct regulator, struct gpio_desc, int
irq

● Resource provider - device (bound to its driver) in control of the
hardware asset exposing resources to consumers and dealing out
resource handles, e.g. regulator driver

● Resource consumer - device (bound to its driver) retrieving a
resource handle from the provider e.g.: SPI controller driver
requesting the chip-select GPIO

Kernel driver “subsystems”
● Provide abstraction layers and enable code reuse for drivers
● Drivers often go through several abstraction layers
● It seems many subsystems have been developed by copying existing

solutions which are not always correct
● In general not scrutinized as much as the core kernel code

Thought experiment

User-space

Kernel-space

Resource
provider moduleSubsystem A

/dev/xyz

Thought experiment

User-space

Kernel-space

Process

Resource
provider moduleSubsystem A

/dev/xyz

Thought experiment

User-space

Kernel-space

Process

fd

Resource
provider moduleSubsystem A

/dev/xyz

Thought experiment

User-space

Kernel-space

Process

fd

Resource
provider moduleSubsystem A

struct
file

/dev/xyz

Thought experiment

User-space

Kernel-space

Process

fd

Resource
provider module

Resource
handleSubsystem A

struct
file

/dev/xyz

Thought experiment

User-space

Kernel-space

Process

fd

Resource
provider module

Resource
handleUSBSubsystem A

struct
file

/dev/xyz

Thought experiment

User-space

Kernel-space

Process

fd

Resource
provider module

Resource
handleUSBSubsystem A

struct
file

/dev/xyz

Thought experiment
How do we notify the user-space process about the resource being now gone?

Option A:
Kill the process?

Process

Option B:
Require the process to setup
a secondary channel?

Process

Resource provider

Option C:
Return an error from
the next system call?

Process

Subsystem

Thought experiment
How do we notify the user-space process about the resource being now gone?

Option A:
Kill the process?

Process

Option B:
Require the process to setup
a secondary channel?

Process

Resource provider

Option C:
Return an error from
the next system call?

Process

Subsystem

Thought experiment
How do we notify the user-space process about the resource being now gone?

Option A:
Kill the process?

Process

Option B:
Require the process to setup
a secondary channel?

Process

unbindfd()

Resource provider

Option C:
Return an error from
the next system call?

Process

Subsystem

Thought experiment
How do we notify the user-space process about the resource being now gone?

Option A:
Kill the process?

Process

Option B:
Require the process to setup
a secondary channel?

Process

unbindfd()

Resource provider

Option C:
Return an error from
the next system call?

Process

read(0,0xf72cf5cf, 1) = ? ENODEV

Subsystem

Thought experiment
How do we notify the user-space process about the resource being now gone?

Option A:
Kill the process?

Process

Option B:
Require the process to setup
a secondary channel?

Process

unbindfd()

Resource provider

Option C:
Return an error from
the next system call?

Process

read(0,0xf72cf5cf, 1) = ? ENODEV

Subsystem

Thought experiment - take 2
User-space

Kernel-space

Driver A Provider of foo

Driver A Provider of foo

Driver A Provider of foo

Driver A Provider of foo

Driver A

Driver A

Thought experiment - take 2
User-space

Kernel-space

Driver A Provider of foo

Driver A Provider of foo

get_foo()

Driver A Provider of foo

Driver A Provider of foo

Driver A

Driver A

Thought experiment - take 2
User-space

Kernel-space

Driver A Provider of foo

Driver A Provider of foo

get_foo()

struct foo

Driver A Provider of foo

Driver A Provider of foo

Driver A

Driver A

Thought experiment - take 2
User-space

Kernel-space

Driver A Provider of foo

Driver A Provider of foo

get_foo()

struct foo

do_foo(foo)Driver A Provider of foo

Driver A Provider of foo

Driver A

Driver A

Thought experiment - take 2
User-space

Kernel-space

Driver A Provider of foo

Driver A Provider of foo

get_foo()

struct foo

do_foo(foo)Driver A Provider of foo

Driver A Provider of foo

Driver A

Driver A

Thought experiment - take 2
User-space

Kernel-space

Driver A Provider of foo

Driver A Provider of foo

get_foo()

struct foo

do_foo(foo)Driver A Provider of foo

Driver A Provider of foo

Driver A do_foo(foo)

Driver A

Thought experiment - take 2
User-space

Kernel-space

Driver A Provider of foo

Driver A Provider of foo

get_foo()

struct foo

do_foo(foo)Driver A Provider of foo

Driver A Provider of foo

Driver A do_foo(foo) ?
Driver A

Thought experiment - take 2
User-space

Kernel-space

Driver A Provider of foo

Driver A Provider of foo

get_foo()

struct foo

do_foo(foo)Driver A Provider of foo

Driver A Provider of foo

Driver A do_foo(foo) ?
Driver A put_foo(foo)

Thought experiment - take 2
User-space

Kernel-space

Driver A Provider of foo

Driver A Provider of foo

get_foo()

struct foo

do_foo(foo)Driver A Provider of foo

Driver A Provider of foo

Driver A do_foo(foo) ?
Driver A put_foo(foo) ??!

Thought experiment - take 2
How do we notify the driver about the resource being now gone?

Option A:
Force device
unbind?

Option B:
Require the driver to setup
a secondary channel?

Option C:
Return an error from
the next API call?

Foo provider Foo consumer

Foo consumer

Foo subsystem Foo provider

Foo consumer

Foo subsystem (foo is gone)

Thought experiment - take 2
How do we notify the driver about the resource being now gone?

Option A:
Force device
unbind?

Option B:
Require the driver to setup
a secondary channel?

Option C:
Return an error from
the next API call?

Foo provider Foo consumer

Driver detach

Foo consumer

Foo subsystem Foo provider

Foo consumer

Foo subsystem (foo is gone)

Thought experiment - take 2
How do we notify the driver about the resource being now gone?

Option A:
Force device
unbind?

Option B:
Require the driver to setup
a secondary channel?

Option C:
Return an error from
the next API call?

Foo provider

bus->remove()

Foo consumer

Driver detach

Foo consumer

Foo subsystem Foo provider

Foo consumer

Foo subsystem (foo is gone)

Thought experiment - take 2
How do we notify the driver about the resource being now gone?

Option A:
Force device
unbind?

Option B:
Require the driver to setup
a secondary channel?

Option C:
Return an error from
the next API call?

Foo provider

bus->remove()

Foo consumer

Driver detach

Driver detach

Foo consumer

Foo subsystem Foo provider

Foo consumer

Foo subsystem (foo is gone)

Thought experiment - take 2
How do we notify the driver about the resource being now gone?

Option A:
Force device
unbind?

Option B:
Require the driver to setup
a secondary channel?

Option C:
Return an error from
the next API call?

Foo provider

bus->remove()

Foo consumer

drv->remove()

Driver detach

Driver detach

Foo consumer

Foo subsystem Foo provider

Foo consumer

Foo subsystem (foo is gone)

Thought experiment - take 2
How do we notify the driver about the resource being now gone?

Option A:
Force device
unbind?

Option B:
Require the driver to setup
a secondary channel?

Option C:
Return an error from
the next API call?

Foo provider

bus->remove()

Foo consumer

drv->remove()

Driver detach

Driver detach

foo_put(foo)

Foo consumer

Foo subsystem Foo provider

Foo consumer

Foo subsystem (foo is gone)

Thought experiment - take 2
How do we notify the driver about the resource being now gone?

Option A:
Force device
unbind?

Option B:
Require the driver to setup
a secondary channel?

Option C:
Return an error from
the next API call?

Foo provider

bus->remove()

Foo consumer

drv->remove()

Driver detach

Driver detach

foo_put(foo)

Foo consumer

Foo subsystem Foo provider

get_foo()

Foo consumer

Foo subsystem (foo is gone)

Thought experiment - take 2
How do we notify the driver about the resource being now gone?

Option A:
Force device
unbind?

Option B:
Require the driver to setup
a secondary channel?

Option C:
Return an error from
the next API call?

Foo provider

bus->remove()

Foo consumer

drv->remove()

Driver detach

Driver detach

foo_put(foo)

Foo consumer

Foo subsystem Foo provider

get_foo()notifier_register()

Foo consumer

Foo subsystem (foo is gone)

Thought experiment - take 2
How do we notify the driver about the resource being now gone?

Option A:
Force device
unbind?

Option B:
Require the driver to setup
a secondary channel?

Option C:
Return an error from
the next API call?

Foo provider

bus->remove()

Foo consumer

drv->remove()

Driver detach

Driver detach

foo_put(foo)

Foo consumer

Foo subsystem Foo provider

get_foo()notifier_register()

Foo consumer

Foo subsystem (foo is gone)

do_foo()

Thought experiment - take 2
How do we notify the driver about the resource being now gone?

Option A:
Force device
unbind?

Option B:
Require the driver to setup
a secondary channel?

Option C:
Return an error from
the next API call?

Foo provider

bus->remove()

Foo consumer

drv->remove()

Driver detach

Driver detach

foo_put(foo)

Foo consumer

Foo subsystem Foo provider

get_foo()notifier_register()

Foo consumer

Foo subsystem (foo is gone)

do_foo()

-ENODEV

Real-life example

User-space

Kernel-space

Real-life example

User-space

Kernel-space

CP2112

I2C
Adapter

GPIO
Chip

USB

Real-life example

User-space

Kernel-space

CP2112

I2C
Adapter

GPIO
Chip

gpiolib-cdev

gpiolib

USB

Real-life example

User-space

Kernel-space
/dev/gpiochip0

CP2112

I2C
Adapter

GPIO
Chip

gpiolib-cdev

gpiolib

USB

Real-life example

User-space

Kernel-space

gpiomon

/dev/gpiochip0

CP2112

I2C
Adapter

GPIO
Chip

gpiolib-cdev

gpiolib

USB

Real-life example

User-space

Kernel-space

gpiomon

/dev/gpiochip0

CP2112

I2C
Adapter

GPIO
Chip

gpiolib-cdev

gpiolib

GPIO_V2_GET_LINE_IOCTL

USB

Real-life example

User-space

Kernel-space

gpiomon

/dev/gpiochip0

CP2112

I2C
Adapter

GPIO
Chip

gpiolib-cdev

gpiolib

GPIO_V2_GET_LINE_IOCTL

request_irq()

USB

Real-life example

User-space

Kernel-space

gpiomon

/dev/gpiochip0

CP2112

I2C
Adapter

GPIO
Chipirq

gpiolib-cdev

gpiolib

GPIO_V2_GET_LINE_IOCTL

request_irq()

USB

Real-life example

User-space

Kernel-space

gpiomon

/dev/gpiochip0

CP2112

I2C
Adapter

GPIO
Chipirq

gpiolib-cdev

gpiolib

GPIO_V2_GET_LINE_IOCTL

request_irq()

USB

Real-life example

User-space

Kernel-space

gpiomon

/dev/gpiochip0

CP2112

I2C
Adapter

GPIO
Chipirq

gpiolib-cdev

gpiolib

GPIO_V2_GET_LINE_IOCTL

request_irq()

USB

kill

Real-life example

User-space

Kernel-space

gpiomon

/dev/gpiochip0

CP2112

I2C
Adapter

GPIO
Chipirq

gpiolib-cdev

gpiolib

GPIO_V2_GET_LINE_IOCTL

request_irq()

USB

free_irq()

kill

Real-life example

User-space

Kernel-space

gpiomon

/dev/gpiochip0

CP2112

I2C
Adapter

GPIO
Chipirq

gpiolib-cdev

gpiolib

GPIO_V2_GET_LINE_IOCTL

request_irq()

USB

free_irq() splat!

kill

Real-life example
● But you could hack something up to notify the character device code I

hear you say!

This is generic problem

Driver DTplatform_get_irq()

Driver IRQ chiprequest_irq()

Driver

Driver

I don’t know
the IRQ chip

is gone

This is generic problem
● Not just interrupts, the same would happen with many other

providers

What’s going on?
● Consumers of resources are not notified about the providers of these

resources getting unbound.
● Consumers hold handles (pointer or number) but there’s no

notification mechanism to let them know the provider is gone.
● GPIO can just barely handle it, interrupts cannot at all.

What’s going on?

What’s going on?

GPIO device driver

What’s going on?

GPIO chip

GPIO device driver

What’s going on?

GPIO chip

GPIO device driver

Implements

What’s going on?

GPIO device

GPIO chip

GPIO device driver

Implements

What’s going on?

GPIO device

GPIO chip

Owned by
GPIO device

GPIO device driver

Implements

What’s going on?

GPIO device

GPIO chip

Owned by
GPIO device

GPIO device driver

Implements

Controlled by
GPIOLIB

What’s going on?

GPIO device

GPIO chip

Reference
counted

Owned by
GPIO device

GPIO device driver

Implements

Controlled by
GPIOLIB

What’s going on?

GPIO device

GPIO chip

GPIO consumer
(can be any driver)

Reference
counted

Owned by
GPIO device

GPIO device driver

Implements

Controlled by
GPIOLIB

What’s going on?

GPIO device

GPIO chip

GPIO
descriptor

GPIO consumer
(can be any driver)

Reference
counted

Owned by
GPIO device

GPIO device driver

Implements

Controlled by
GPIOLIB

What’s going on?

GPIO device

GPIO chip

GPIO
descriptor

GPIO consumer
(can be any driver)

Reference
counted

Owned by
GPIO device Holds a reference to GPIO

device

GPIO device driver

Implements

Controlled by
GPIOLIB

What’s going on?

GPIO device

GPIO
descriptor

GPIO consumer
(can be any driver)

Reference
counted

Holds a reference to GPIO
device

Controlled by
GPIOLIB

What’s going on?

GPIO device

GPIO
descriptor

GPIO consumer
(can be any driver)

Reference
counted

Holds a reference to GPIO
device

Controlled by
GPIOLIB

gpiod_direction_input()

What’s going on?

GPIO device

GPIO
descriptor

GPIO consumer
(can be any driver)

Reference
counted

Holds a reference to GPIO
device

Controlled by
GPIOLIB

gpiod_direction_input()

return 0; // emit warning

What’s going on?
● Yes, GPIOLIB still needs a lot of work for correct plug-and-play

○ Needs fine-grained locking
○ RCU protection of struct gpio_chip pointer
○ Must not use the global spinlock as it releases it at times to interact with

pinctrl which uses mutexes exclusively (sic!)

We go through so many abstraction layers…

We go through so many abstraction layers…

nvmem

We go through so many abstraction layers…

nvmem

at24

We go through so many abstraction layers…

nvmem

at24

regmap

We go through so many abstraction layers…

I2C

nvmem

at24

regmap

We go through so many abstraction layers…

hid-cp2112

I2C

nvmem

at24

regmap

We go through so many abstraction layers…

hid-cp2112

I2C

nvmem

HID

at24

regmap

We go through so many abstraction layers…

hid-cp2112

I2C

nvmem

HID

USB

at24

regmap

We go through so many abstraction layers…

hid-cp2112

I2C

nvmem

HID

USB

at24

They don’t
know they’re

on a stick

regmap

Let’s try a different approach
● Kernel complex resources are not like virtual memory. They can go

away at any moment without the user knowing.
● Even if the subsystem doesn’t know it
● Caller of kmalloc() “owns” the allocated chunk
● Caller of foo_get() “references” the “foo” resource
● User should get a “weak” reference to a resource.
● User must release that reference but the underlying resource can

already be gone.
● When it is gone, the API should gracefully communicate that to the

caller

Common data model for resource providers

Resource
provider

driver

Resource
subsystem

Resource
consumer

Common data model for resource providers

Resource
provider

driver

Creates and
owns

Resource
subsystem

Resource
consumer

Common data model for resource providers

Resource
provider

driver

Resource
provider

implementation

Creates and
owns

Resource
subsystem

Resource
consumer

Common data model for resource providers

Resource
provider

driver

Resource
provider

implementation

Creates and
owns

Resource
subsystem

Creates and
owns

Resource
consumer

Common data model for resource providers

Resource
provider

driver

 Reference counted
 wrapper around the
 implementation

Resource
provider

implementation

Creates and
owns

Resource
subsystem

Creates and
owns

Resource
consumer

Common data model for resource providers

Resource
provider

driver

 Reference counted
 wrapper around the
 implementation

Resource
provider

implementation

Creates and
owns

Resource
subsystem

Creates and
owns

Resource
consumerRemoved when

the provider
device is
unbound

Common data model for resource providers

Resource
provider

driver

 Reference counted
 wrapper around the
 implementation

Resource
provider

implementation

Creates and
owns

Resource
subsystem

Creates and
owns

Resource
consumerRemoved when

the provider
device is
unbound

Removed when
the last reference

is dropped

Common data model for resource providers

Resource
provider

driver

 Reference counted
 wrapper around the
 implementation

Resource
provider

implementation

Creates and
owns

Resource
subsystem

Creates and
owns

Creates and provides

Resource
consumerRemoved when

the provider
device is
unbound

Removed when
the last reference

is dropped

Common data model for resource providers

Resource
provider

driver

 Reference counted
 wrapper around the
 implementation

Resource
provider

implementation

Creates and
owns

Resource
subsystem

Creates and
owns

Creates and provides

Resource
handleReferences

Resource
consumerRemoved when

the provider
device is
unbound

Removed when
the last reference

is dropped

Common data model for resource providers

Resource
provider

driver

 Reference counted
 wrapper around the
 implementation

Resource
provider

implementation

Creates and
owns

Resource
subsystem

Creates and
owns

Creates and provides

Resource
handleReferences

Resource
consumer

Holds

Removed when
the provider

device is
unbound

Removed when
the last reference

is dropped

Common data model for resource providers

Resource
provider

driver

 Reference counted
 wrapper around the
 implementation

Resource
provider

implementation

Creates and
owns

Resource
subsystem

Creates and
owns

Creates and provides

Resource
handle

Resource
consumer

Holds

Removed when
the provider

device is
unbound

Removed when
the last reference

is dropped
Provides an
interface for

managing the
resourceReferences

Common data model for resource providers

Resource
provider

driver

 Reference counted
 wrapper around the
 implementation

Resource
provider

implementation

Creates and
owns

Resource
subsystem

Creates and
owns

Creates and provides

Resource
handleReferences

Resource
consumer

Holds

Removed when
the provider

device is
unbound

Removed when
the last reference

is dropped
Provides an
interface for

managing the
resource

Common data model for resource providers

 Reference counted
 wrapper around the
 implementation

Resource
subsystem

Creates and
owns

Creates and provides

Resource
handleReferences

Resource
consumer

Holds

Removed when
the last reference

is dropped
Provides an
interface for

managing the
resource

What about synchronization?

 Resource wrapperResource Consumer

Protect the pointer to the implementation with SRCU

What about synchronization?

 Resource wrapperResource Consumerdo_foo()

Protect the pointer to the implementation with SRCU

What about synchronization?

 Resource wrapperResource Consumerdo_foo()

srcu_read_lock()

Protect the pointer to the implementation with SRCU

What about synchronization?

 Resource wrapperResource Consumerdo_foo()

srcu_read_lock()

Protect the pointer to the implementation with SRCU

rcu_dereference();
If (wrapper->impl)

What about synchronization?

 Resource wrapperResource Consumerdo_foo()

srcu_read_lock()

Protect the pointer to the implementation with SRCU

rcu_dereference();
If (wrapper->impl)

Do stuff

What about synchronization?

 Resource wrapperResource Consumerdo_foo()

srcu_read_lock()

Protect the pointer to the implementation with SRCU

rcu_dereference();
If (wrapper->impl)

Do stuff
srcu_read_unlock()

What about synchronization?

 Resource wrapperResource Consumerdo_foo()

srcu_read_lock()

Protect the pointer to the implementation with SRCU

rcu_dereference();
If (wrapper->impl)

Do stuff
srcu_read_unlock()

When provider is going down:

What about synchronization?

 Resource wrapperResource Consumerdo_foo()

srcu_read_lock()

Protect the pointer to the implementation with SRCU

rcu_dereference();
If (wrapper->impl)

Do stuff
srcu_read_unlock()

When provider is going down:

rcu_assign_pointer(handle->res, NULL);
synchronize_srcu()

Interlude

On struct device
● Common pattern in device drivers - physical and logical devices:

struct platform_device |
struct pci_device |
struct usb_device

struct device

struct platform_device |
struct pci_device |
struct usb_device

struct device struct device

e.g.: i2c_adapter e.g.: GPIO banks

On struct device
● Also a common pattern in device drivers:

Driver Subsystem

struct foo {
 struct device dev;
 …
};

struct priv {
 struct foo foo;
 …
};

On struct device
● Also a common pattern in device drivers:

Driver Subsystem

priv = devm_kzalloc()

struct foo {
 struct device dev;
 …
};

struct priv {
 struct foo foo;
 …
};

On struct device
● Also a common pattern in device drivers:

Driver Subsystem

priv = devm_kzalloc()

register_foo_with_subsystem()

struct foo {
 struct device dev;
 …
};

struct priv {
 struct foo foo;
 …
};

On struct device
● Also a common pattern in device drivers:

Driver Subsystem

priv = devm_kzalloc()

register_foo_with_subsystem()

struct foo {
 struct device dev;
 …
};

● foo will be freed when the device is unbound but consumers may still
hold references to struct device!

struct priv {
 struct foo foo;
 …
};

On struct device
● Subsystems will bravely venture out to fix problems they create by

this approach
● Some hand over foo entirely to the subsystem who’ll be in charge of

its life-time
○ alloc_foo() + register_foo() approach
○ Breaks life-time logic - the driver allocates the object but is not

responsible for freeing it
● Others do crazy things like:

○ block on completion for the last reference to be released when the
provider device is unbound (I’m looking at you i[23]c)

○ have a field in subsystem-specific structures e.g. bool managed that’s
set to true if the structure was allocated with devres which defeats the
purpose of devres (!)

○ expect the drivers to populate the device release callback (!?)
● Of course many subsystems will just act like the problem doesn’t exist and produce fireworks on unbind

Wolfram’s preferred solution:

struct foo {
 struct device dev;
 …
};

struct priv {
 struct foo *foo;
 …
};

SubsystemDriver

Wolfram’s preferred solution:

struct foo {
 struct device dev;
 …
};

struct priv {
 struct foo *foo;
 …
};

Subsystem

priv = devm_kzalloc();

Driver

Wolfram’s preferred solution:

struct foo {
 struct device dev;
 …
};

struct priv {
 struct foo *foo;
 …
};

Subsystem

priv->foo = devm_alloc_foo()

priv = devm_kzalloc();

Driver

Wolfram’s preferred solution:

struct foo {
 struct device dev;
 …
};

struct priv {
 struct foo *foo;
 …
};

Subsystem

priv->foo = devm_alloc_foo()

priv = devm_kzalloc();

tweak_foo(priv->foo);

Driver

Wolfram’s preferred solution:

struct foo {
 struct device dev;
 …
};

struct priv {
 struct foo *foo;
 …
};

Subsystem

priv->foo = devm_alloc_foo()

priv = devm_kzalloc();

tweak_foo(priv->foo);

foo_register(priv->foo);

Driver

Wolfram’s preferred solution:
● Asymmetric logic: drivers should be in charge of releasing resources

they acquire, IOW every resource acquisition should be accompanied
by the corresponding releasing within the same scope: alloc() ->
free(), get() -> put(), ref() -> unref()

● Unnecessarily convoluted: drivers almost never need to access the
logical struct device

Let’s grill two chickens on the same skewer or something

Driver Subsystem

struct foo_wrapper {
 struct device dev;
 struct foo __rcu *impl;
 …
};

struct foo {
 struct foo_ops ops;
 …
};

struct priv {
 struct foo foo;
 …
};

Let’s grill two chickens on the same skewer or something

Driver Subsystem

struct foo_wrapper {
 struct device dev;
 struct foo __rcu *impl;
 …
};

priv = devm_kzalloc()

struct foo {
 struct foo_ops ops;
 …
};

struct priv {
 struct foo foo;
 …
};

Let’s grill two chickens on the same skewer or something

Driver Subsystem

struct foo_wrapper {
 struct device dev;
 struct foo __rcu *impl;
 …
};

priv = devm_kzalloc()

struct foo {
 struct foo_ops ops;
 …
};

struct priv {
 struct foo foo;
 …
};

priv->foo.ops = { };

Let’s grill two chickens on the same skewer or something

Driver Subsystem

struct foo_wrapper {
 struct device dev;
 struct foo __rcu *impl;
 …
};

priv = devm_kzalloc()

register_foo_with_subsystem(&priv->foo)

struct foo {
 struct foo_ops ops;
 …
};

struct priv {
 struct foo foo;
 …
};

priv->foo.ops = { };

Let’s grill two chickens on the same skewer or something

Driver Subsystem

struct foo_wrapper {
 struct device dev;
 struct foo __rcu *impl;
 …
};

priv = devm_kzalloc()

register_foo_with_subsystem(&priv->foo)

wrp = make_foo_wrapper(foo)

struct foo {
 struct foo_ops ops;
 …
};

struct priv {
 struct foo foo;
 …
};

priv->foo.ops = { };

Interlude

The way forward

Does this
make any

sense?

The way forward

Does this
make any

sense?

No

The way forward

Does this
make any

sense?

No

Thank you for
attending my talk!

The way forward

Does this
make any

sense?

No Yes

Thank you for
attending my talk!

The way forward

Does this
make any

sense?

No Yes

Thank you for
attending my talk! No easy solutions

The way forward
● GPIO was mostly following the presented pattern but fixing issues

still takes a lot of time
○ Lots of abuse by GPIOLIB users needs fixing before addressing

fundamentals
● Complete overhaul of a subsystem would mean modifying tens of

provider drivers
● Proposition: dedicated abstraction layer for resource providers

○ Abstract the notion of resource handles on the consumer side
○ Abstract the notion of logical devices for providers

Resource provider abstraction?

There's no problem in Computer Science
that can't be solved by adding another
layer of abstraction to it.

Resource provider abstraction?
struct gpio_desc *gpiod_get(...)
{
 return resmgr_get (&gpio_res, ...);
}

struct regulator *regulator_get (...)
{
 return resmgr_get (®ulator_res ,
...);
}

int gpiod_get_value (...)
{
 guard(resmgr)(&desc->res);
 ...
}

struct gpio_device {
 struct resmgr_prvd shell ;
 ...
};

struct resmgr_shell {
 void __rcu *impl;
 ...
};

static
DEFINE_RESOURCE_PROVIDER (gpio_res);

int resmgr_add_provider (struct resmgr_prvd
*prvd);
int resmgr_del_provider (struct resmgr_prvd
*prvd);

● Take care of concurrent access
● Handle lookups
● Handle provider removal

Thank you

Q & A

