
VSOCK
From Convenience to Performant VirtIO Communication

Amery Hung, Linux Kernel Engineer
Bobby Eshleman, Linux Kernel Engineer
Systems Technology and Engineering, ByteDance

1

Agenda

• Background
• VSOCK usage / features
• Protocol Overview

• Performance
• Recent work

• Datagram Support
• Socket Map

• Future work

2

Background

• VSOCK
• socket family (AF_VSOCK)
• zero-configuration communication

between virtual machines and the
host

• context ID (CID) identifies host or VM
• ports used as usual
• specified by virtio (hyper v and

vmware also have implementations)

App

virtio-vsock

vhost-vsock

Guest Host App

Host Kernel

3

Background

• Common use case is guest agents (qemu-guest-agent and kata-agent)
• qemu-guest-agent

• suspend, backup, etcc
• kata-agent

• talk with kata-runtime, manage/supervisor containers in guest
• Preferred over TCP/IP because

• Adding a virtual NIC is overly intrusive
• Requires changes (and maintenance) to both host and guest network configuration

• Preferred over serial because
• Serial doesn't support socket API

• Multiple senders/receivers often require additional proxy service for multiplexing
• The serial link limits read/write access to one process at a time
• Custom protocol must be handwritten for some features like message boundaries

4

The Protocol

• Connection Establishment:
• Initiated with a two-way handshake
■ Client sends a REQUEST packet.
■ Server responds with a RESPONSE packet to establish the connection.

• Data Transmission:
• Application data is sent in RW packets.
• Received data is forwarded to the application by the destination socket.
• Destination socket sends control flow information (credit update) to the source.

• Connection Termination:
• Terminated with a two-way tear-down process.
• Disconnecting side sends a SHUTDOWN packet.
• This SHUTDOWN packet is acknowledged with an RST packet, terminating the connection.

5

The Protocol

• Control flow via credit allocation
• All packet headers include fwd_cnt and buf_alloc so that endpoints may inform each other of

• How much data the has already been forwarded to the application
• How much total receive buffer is currently allocated

• Sources may calculate:
• free_buffer = total_buffer - (already_sent - already_forwarded)

• That is, senders always know how much more data a receiver can handle
• Implicit updates when sending RW payloads
• Updates may also happen explicitly via credit request and credit update messages
• For Linux virtio-vsock, credit updates are volunteered after forwarding messages to user

space (e.g., recvmsg())

6

VSOCK Performance

• VSOCK is optimized for convenient usage by applications and design simplicity
• Not originally designed with performance as the primary goal

• Single queue virtqueue
• workqueue sender only

• workqueue wakeup latency always incurred (amortized by batching)
• possible room for improvement in synchronization, cache, and memory efficiency

• Some implementation details are very helpful for performance
• Batching
• No need for much of networking stack (routing, filters, etc...)

• Cycles saved because features not needed/supported
• Currently not often used for performance-sensitive workloads

• We are seeing potential for this use case

7

Recent Work: Datagrams for virtio-vsock

• Status
• virtio not upstream yet
• Datagrams already supported on vmware, but not virtio
• Datagram POC patches sent to mailing list

• Linux:
● https://lore.kernel.org/all/20230413-b4-vsock-dgram-v5-0-581bd37fdb26@bytedance.

com/
• virtio spec:
● https://lore.kernel.org/all/20230829181549-mutt-send-email-mst@kernel.org/#r

• Features/notes
• Connection-less, unreliable, may drop packets
• Does not use credits

• No destination socket necessarily exists to allocate credits
• Destination and source socket lifetimes are out-of-sync, therefore forwarded and sent

totals are also out-of-sync
• Proposal in development uses start/stop messages to control flow

8

https://lore.kernel.org/all/20230413-b4-vsock-dgram-v5-0-581bd37fdb26@bytedance.com/
https://lore.kernel.org/all/20230413-b4-vsock-dgram-v5-0-581bd37fdb26@bytedance.com/
https://lore.kernel.org/all/20230829181549-mutt-send-email-mst@kernel.org/#r

Recent Work: Datagrams for virtio-vsock
• Performance comparison with UDP

• Configuration
• virtio-net is vhost/virtio with mq (1 rx and 1 tx queue per CPU)
• 8 vcpus
• 1 sending thread per vcpu
• Linux host w/ 1 guest
• vsock and udp have equal SO_SNDBUF

9

+104%

+83%

+91%

+98%

High-level Component View

10

app

tc

iptables

netfilter

qdisc

virtio

socket

app

CID
lookup

vhost transport

socket

app

virtio transport

socket

UDP/IP/virtio VSOCK

Guest to Host

Host to Guest

Becomes or

UDP vs VSOCK DGRAM function latencies

• Why does VSOCK datagram perform well?
• One reason: VSOCK datagram enqueueing has comparatively low latency

system func name avg latency (us)

vsock*
virtio_transport_send_pkt_work() 23

vsock_dgram_sendmsg() 8

udp over virtio
start_xmit() 16

udp_sendmsg() ** 72

* a very important delay is missing from this chart: the workqueue delay (avg ~300 us on some test runs)
** udp_sendmsg() often calls start_xmit() directly, so the start_xmit() is sometimes included in
udp_sendmsg()'s latency

11

Overall Comparison

12

Overall Comparison

13

*udp only shown for <= 1K because excessive out of buffer errors for 1K > payloads

Recent Work: Sockmap for virtio-vsock

• Sockmap offers programmable skb redirection in the kernel space

Proxy App

virtio-vsock

vhost-vsock

Guest Host App

Host Kernel

Apps

virtio-vsock

vhost-vsock

Guest Host App

Host Kernel

sockmap

App1 App2 App3

14

Sockmap removes overheads due to syscalls and data copying

• Comparison of different packet redirection: socat (8KB buffer) vs sockmap
• Guest: 8 vcpus, 1 single-thread client sending UDP traffic
• Host: 1 single-thread server receiving data from vsock

15

Sockmap removes overheads due to syscalls and data copying

16

• Comparison of different packet redirection: socat (8KB buffer) vs sockmap
• Guest: 8 vcpus, 1 single-thread client sending UDP traffic
• Host: 1 single-thread server receiving data from vsock

Future Work

• Finish upstreaming current patches
• Support multiple virtqueues?

• Current protocol can't support this... introduce v2?
• General optimizations

• Improve workqueue-induced delay
• Improve lock duration and granularity

17

Summary

• VSOCK is a zero-configuration communication channel between host and guest
• Recent improvements in vsock make it more performant
• More optimizations to come

18

THANKS

19

