DAMON:
Current Status and Future Plans

SeongJae Park <sj@kernel.org>

https://damonitor.github.io
Notices

- The views expressed herein are those of the speaker; they do not reflect the views of his employers
I, SeongJae Park (SJ)

- Working on AWS
- Maintaining Linux kernel DAMON subsystem and its user-space tool, DAMO
Overview

• DAMON in a Nutshell (10 mins)
• Updates Since Kernel Summit 2022 (10 mins)
• Future Plans (15 mins)
• DAMON Community (5 mins)
• Conclusion and Remaining QnA

• Each time-specified topic will get its own QnA
DAMON in a Nutshell
Why? Increasing Demands/Costs and No-free-lunch H/W Solution

- Memory demands increase faster than the price is decreasing
- New H/W will arrive, but as a new hierarchy rather than a perfect drop-in replacement
 - No free lunch
- Need access-aware system operation, but how can we be access-aware?

Figure 2: Latency characteristics of memory technologies.

Figure 3: Memory as a percentage of rack TCO and power across different hardware generations of Meta.

How Data Access Would Look Like, Over Time

- Accesses are made sometime, somewhere
How Data Access Would Look Like, Over Time

- Accesses are made sometime, somewhere
How Data Access Would Look Like, Over Time

- Accesses are made sometime, somewhere
Ideal Data Access MONitor

- Capture all access
- Space granularity: bit (or, electron?)
- Time granularity: 1 sec / CPU freq / # CPUs (or, speed of light?)
- Record from: From the boot (or, since Unix timestamp 0 (1970-01-01)?)
Fixed Granularity Monitoring

- Let user define the time/space granularity ('nr_min_regions' and 'sample_interval')
 - 10 and 5ms by default for the two parameters

- Check access to only one page per region
 - Pages in each region is assumed to have similar access frequencies
 - ‘nr_min_regions’ could be “monitoring target address space size / PAGE_SZ”
Sampling Results Aggregation

- Introduce new user-specifiable time interval, “aggregate interval” (100ms by default)
 - Count number of access-detected sampling intervals per aggregate interval (“nr_accesses”)
- Amount of the record is reduced
 - A bool per sampling interval → One counter per aggregate interval
 - Create snapshot per aggregation interval
Introduce new user-specifiable time interval, “aggregate interval” (100ms by default)
 - Count number of access-detected sampling intervals per aggregate interval (“nr_accesses”)

Amount of the record is reduced
 - A bool per sampling interval → One counter per aggregate interval
 - Create snapshot per aggregation interval
Merging Regions

- Definition of region: address range that has similar access frequencies to pages in it.

<table>
<thead>
<tr>
<th>Address</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Time

Aggregate interval

Region
Merging Regions

- Definition of region: address range that having similar access frequencies to pages in it
- Merge adjacent regions of similar access frequency, at the end of the aggregation interval
Split Regions

- Access pattern may change over time
Split Regions

- Access pattern may change over time
- Randomly split regions at the beginning of aggregation interval
- Some would be merged at the end of the aggregation interval
Continuous Merge/Split: Adaptive Regions Adjustment

- Split reverts unnecessary merge, vice versa
- One page per region sampling still reasonable
- Users can set `nr_{min,max}_regions`
 - DAMON stops merge/split if the range can be violated
- Users can control accuracy and overhead
Age Counting

- Age: Number of last aggregation intervals that similar nr_accesses were kept
- Snapshot contains some history
DAMON: Access Monitoring Results Snapshot Generator

- Answer to “Which memory region is how frequently accessed for how long time?”
 - With controllable overhead and accuracy
DAMON: Access Monitoring Results Snapshot Generator

- Answer to “Which memory region is how frequently accessed for how long time?”
 - With controllable overhead and accuracy
- Wait, isn't this information enough to make *kernel just works*?
DAMOS: DAMON-based Operation Schemes

- Find regions of interesting access pattern from the snapshot and apply a requested action
 - “Page out pages of regions that not accessed for >= 2 mins
 - “Use THP for pages of regions that having >= 10% access rate for >= 1 minute”

- Multiple requests (called schemes) can be made

```
# damo start --damos_action pageout --damos_access_rate 0% 0% --damos_age 2m max
# damo start --damos_action thp --damos_access_rate 10% max --damos_age 1m max
```
DAMOS: Target Access Pattern and Action

- Basic ways to specify the request
- Target access pattern
 - Ranges of size, access rate, and age of the region of the interest
- Action
 - System action that DAMOS will make to the regions of the pattern
 - pageout, thp, nothp, ...
DAMOS Quota

- DAMOS target access pattern is hard to tune
 - min/max for 3 ranges = 6 parameters
 - Optimum tuning depends on the characteristics of the system and workloads

- Quota: user-specifiable maximum resource that DAMOS can use for applying the action
 - e.g., Apply the action to only up to 100 MiB of regions per second

- Under the limit, DAMOS prioritizes regions based on access pattern, following the context
 - If the action is pageout, colder pages are prioritized
 - If the action is thp, hotter pages are prioritized
QnA for DAMON/DAMOS Basics

- Sampling-based access frequency monitoring
- Adaptive regions adjustment
- DAMOS, w/ access pattern
- DAMOS quota
DAMON Updates
Since Kernel Summit 2022
Overview

- DAMON in a Nutshell (10 mins)
- Updates Since Kernel Summit 2022 (10 mins)
- Future Plans (15 mins)
- DAMON Community (5 mins)
- Conclusion and Remaining QnA

- Each time-specified topic will get its own QnA
DAMOS Tried Regions

- Expose DAMOS-found target regions

- Expected Usages
 - Debugging and tuning DAMOS schemes and/or DAMOS itself
 - Query-like efficient monitoring results collecting

- Provide kernel API, tracepoint, and sysfs interfaces

- Merged in v6.2

- https://lore.kernel.org/damon/20221101220328.95765-1-sj@kernel.org/
DAMOS Filters

- Non-access pattern information based DAMOS target filtering
 - Type of backing content of the page (file or anon)
 - Belonging memory cgroups
 - Address range
 - Belonging process

- E.g., “Apply this DAMOS scheme to anon pages of these cgroup, if it’s in the address range of NUMA node X, but exclude those of these processes”

- Merged in v6.3, later expanded supporting types in v6.6
 - https://lore.kernel.org/damon/20221205230830.144349-1-sj@kernel.org/
 - https://lore.kernel.org/damon/20230802214312.110532-1-sj@kernel.org/
Psuedo Moving-Average Access Rate-based Snapshot Generation

- DAMON snapshot is prepared per aggregation interval (100 ms by default)
- Problematic with long aggregation interval (e.g., 20 secs)
 - Long aggregation interval for high accuracy and/or lower overhead
- Generate a snapshot with pseudo moving average access rate per sampling interval
- Merged in v6.7-rc1
- https://lore.kernel.org/damon/20230915025251.72816-1-sj@kernel.org/

\[
\text{moving_sum}(n) = \text{moving_sum}(n - 1) - \frac{\text{last_non_moving_sum}}{\text{len_window}} + \text{new_value}
\]

https://lore.kernel.org/damon/20230915025251.72816-4-sj@kernel.org/
DAMOS Apply Interval

- DAMOS applies the action to regions every aggregation interval
 - Since the snapshot is complete only at that time
- Psuedo-moving access rate allows them be independent
- Use a dedicated time interval for DAMOS
- Merged in v6.7-rc1
- https://lore.kernel.org/damon/20230916020945.47296-1-sj@kernel.org/
DAMO (Data Access Monitoring Operator) v2

- DAMO is a DAMON user-space tool
- Available on many distros
- Initially designed for static offline monitoring usage
- re:Designed to support online DAMON usages
- Released just before OSSummit EU 2023 (Sep 2023)
QNA for DAMON Updates since KernelSummit 2022

- DAMOS Tried Regions
- DAMOS Filters
- Pseudo moving average access rate based snapshot generation
- DAMOS apply interval
- DAMO v2
Overview

- DAMON in a Nutshell (10 mins)
- Updates Since Kernel Summit 2022 (10 mins)
- Future Plans (15 mins)
- DAMON Community (5 mins)
- Conclusion and Remaining QnA

• Each time-specified topic will get its own QnA
DAMON Future Plans
Aim-oriented Feedback-driven DAMOS Aggressiveness Auto-tuning

https://lore.kernel.org/damon/20231112194607.61399-1-sj@kernel.org/
DAMOS Tuning Difficulty

- Quota reduces DAMOS tuning complexity by removing number of knobs (6 to 1)
- Optimum quota value still depends on systems and workloads
- Especially difficult for balancing two conflicting schemes
 - Number of knobs still increase with multiple schemes
Aim-oriented Feedback-driven Aggressiveness Auto Tuning

- DAMOS quota is good for controlling aggressiveness
 - The prioritization mechanism provides a best effort

- Idea: Allow users feed and tame DAMOS
 - Ask what users want from DAMOS, instead of how DAMOS should work
 - Easier to know for users who don’t know DAMOS
 - Separate the policy and the mechanism
 - DAMOS somehow make it; Users provide feedback

- Implementation: A simple feedback loop algorithm

\[
f(n) = \max(f(n - 1) \ast \left(\frac{(\text{target_score} - \text{current_score})}{\text{target_score}} + 1\right), 1)\]
Progress and Test Results

- First idea was shared on ksummit 2022; First RFC patchset has sent for ksummit 2023
 - Presentation-driven development works

- Proactive reclamation aiming last 10 secs 0.5% memory pressure stall has tested
 - Memory saving and performance overhead similar to an “offline tuned" ones (DAMOOS)
 - Aggressiveness auto-tuning achieves best PSI saving among all
QnA for DAMOS Aggressiveness Auto-tuning

- Tuning difficulty
- Aim-oriented feedback-driven aggressiveness auto-tuning
- Test results
Access/Contiguity-aware Memory Auto-scaling (ACMA)

https://lore.kernel.org/damon/20231112195114.61474-1-sj@kernel.org/
Collaborative Memory Over-subscribed VM systems

- Guest voluntarily reports pages that the host can reuse
 - Free pages reporting
- The host detects guests’ access to reported pages (page fault) and allocate new one
Guest Requirements

- Being memory frugal without performance impact
 - To allow higher over-subscription ratio

- Report time free pages contiguity
 - To minimize reporting overhead

- Reported pages contiguity
 - If the host uses large page size, to avoid returning whole host-page (large) for single guest-page (small) fault

- Minimizing metadata for reported pages
 - To maximize the over-subscription
Possible Solutions and Challenges

● Being memory frugal: DAMON-based proactive reclamation

● Report-time contiguity: Proactive compaction
 – Compaction could fail due to isolation/migration failures
 – More-than-required granularity compaction waste resource

● Post-report contiguity: We found no good solution

● Minimizing metadata for reported pages: Memory hot-remove
 – Memory-block granularity isolation/migration is slow and fails frequently

● Orchestrating multiple kernel features that not designed together from user space
 – Complex and inefficient
ACMA: Access/Contiguity-aware Memory Autoscaling

• A new kernel feature designed for the requirements

• Aims
 – Provide better solutions for each problem if possible
 – Efficiently orchestrate the solutions
 – Provide easy-to-use user interface (kernel that just works)
ACMA: New Metric and Operation

- New metric: DAMON-working set
 - Memory regions that DAMON has shown access to, within a user-specifiable time threshold

- New operation: Stealing
 - Migrate pages in given physical address range out and take the pages of the range
 - Do nothing with the pages but report those pages to the host as free to use
 - If an entire memory block is stolen, hot-remove the block, free metadata, report the freed pages
 - Maybe similar to virtio-mem's memory reduction operation
ACMA: Workflow

- If DAMON-working set to free memory ratio is higher than a threshold (high, e.g., 200%)
 - Steal report-gran-contiguous regions from last available memory block, colder regions first
- If the ratio is becomes lower than a threshold (middle, e.g., 100%)
 - Stop stealing
 - Run DAMON-based proactive reclamation, until the ratio reaches the threshold (middle)
- If the ratio is lower than yet another threshold (low, e.g., 50%)
 - Start returning stolen pages, stolen pages closer to not-yet-stolen memory block first
 - Hot-add previously hot-removed memory block if needed
 - Continue until the ratio reaches the threshold (low)
ACMA: Expectations, or Hopes

- System gets free memory of a size that relative to working set
 - 50-100% in above example

- Compaction (migration) for only report-granularity contiguity

- Less compaction/hot-remove failures, due to colder pages first approach

- Easy to use: Set only three thresholds

- More hopes, or crazy thoughts
 - Useful for general memory auto-scaling (for DRAM's power consumption saving?)
 - Expand to be yet another contiguous memory allocator (Access-aware CMA?)
Progress

- No implementation at all
- Detailed RFC idea is sent to the mailing list
QnA for ACMA
DAMOS Auto-tuning Based Tiered Memory Management

https://lore.kernel.org/damon/20231112195602.61525-1-sj@kernel.org/
Various DAMOS-based Tiered Memory Management Approaches

- DAMOS is not supporting tiered memory management at the moment
 - The maintainer willing to, but has no good test setup so far
- First DAMOS patch for tiered memory management was *sent* 2 years ago
 - No new revision so far, though
- A few various downstream approaches made
 - Results also vary
- Maybe better to have a public approach or idea to discuss
DAMOS-based Tiered Memory Management

- For each CPU-independent NUMA node,
 - If the node has a lower node,
 - Demote cold pages of the current node to the lower node, aiming little fraction (e.g. 5%) of free memory of the current node
 - If the node has a upper node,
 - Promote hot pages of the current node to the upper node, aiming big fraction (e.g., 96%) of used memory of the _upper_ node

node 0 (fast) No lower node, do nothing
DAMOS-based Tiered Memory Management

• For each CPU-independent NUMA node,
 – If the node has a lower node,
 • Demote cold pages of the current node to the lower node, aiming little fraction (e.g. 5%) of free memory of the current node
 – If the node has an upper node,
 • Promote hot pages of the current node to the upper node, aiming big fraction (e.g., 96%) of used memory of the _upper_ node

node 0 (fast) Demote cold pages in node 0 aiming 5% free memory of node 0
node 1 (slow) Promote hot pages in node 1 aiming 96% used memory of node 0
DAMOS-based Tiered Memory Management

- For each CPU-independent NUMA node,
 - If the node has a lower node,
 - Demote cold pages of the current node to the lower node, aiming little fraction (e.g. 5%) of free memory of the current node
 - If the node has a upper node,
 - Promote hot pages of the current node to the upper node, aiming big fraction (e.g., 96%) of used memory of the upper node

node 0 (fast) Demote cold pages in node 0 aiming 5% free memory of node 0
node 1 (slow) Promote hot pages in node 1 aiming 96% used memory of node 0
node 2 (slow) Demote cold pages in node 1 aiming 5% free memory of node 1
node 3 (slow) Promote hot pages in node 2 aiming 96% used memory of node 1
Expectations, or Hopes

- High utilization of upper nodes, with hotter pages
- Low utilization of lower nodes, with colder pages
 - Auto-tuning-based speed control and overlapping memory util/free goals
 - Keep slow but continuous promotion/demotion
- Easy to be applied for multiple tiers
- Possible future extensions
 - General NUMA balancing
 - Extend DAMON to capture accesses maker CPU
 - Combination with ACMA
 - Automatically remove/add tiers depending on real (or, DAMON-) workingset
Progress

- No implementation at all
- Detailed RFC idea is sent to the mailing list
QnA for DAMOS-based Tiered Memory Management
Overview

- DAMON in a Nutshell (10 mins)
- Updates Since Kernel Summit 2022 (10 mins)
- Future Plans (15 mins)
- DAMON Community (5 mins)
- Conclusion and Remaining QnA

- Each time-specified topic will get its own QnA
DAMON Community
Community Members

- DAMON is a community-driven project
- Everyone interested in DAMON is a member
 - Amazon Linux ported initial version of DAMON in their >=v5.4 kernels
 - Android common kernel ported and enabled DAMON_RECLAIM
 - Some companies published their research on DAMON
 - Some academic papers are addressing DAMON
Collaborations

- Collaborating with a number of AWS internal/external people (DAMON community)
- In v6.1..v6.7-rc1, 27 Amazon-external people contributed 51/192 patches for DAMON
 - For v5.15..v6.1, 39 people, 90/163 patches (DAMON is collapsing, or ... stabilized?)
- There were significant contributions to the user space tool (DAMO), too

<table>
<thead>
<tr>
<th>range</th>
<th>AWS</th>
<th>non-AWS</th>
<th>AWS/non-AWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>v6.1..v6.2</td>
<td>28</td>
<td>6</td>
<td>17.65 %</td>
</tr>
<tr>
<td>v6.2..v6.3</td>
<td>32</td>
<td>16</td>
<td>33.33 %</td>
</tr>
<tr>
<td>v6.3..v6.4</td>
<td>0</td>
<td>5</td>
<td>100.00 %</td>
</tr>
<tr>
<td>v6.4..v6.5</td>
<td>19</td>
<td>8</td>
<td>29.63 %</td>
</tr>
<tr>
<td>v6.5..v6.6</td>
<td>20</td>
<td>7</td>
<td>25.93 %</td>
</tr>
<tr>
<td>v6.6..v6.7-rc1</td>
<td>42</td>
<td>9</td>
<td>17.65 %</td>
</tr>
<tr>
<td>v6.1..v6.7-rc1</td>
<td>141</td>
<td>51</td>
<td>26.56 %</td>
</tr>
</tbody>
</table>
Communication Channels

- DAMON-dedicated open mailing list
- Bi-weekly community meetup series
 - Second in-person version will be held as an LPC BoF, at 4:30 pm, today
- Presenting DAMON in conferences since 2019
 - Striving to present for both kernel and user space developers
 - LSFMM, LinuxCon NA/EU, and Kernel Summit in 2023
- Having occasional/regular private meetings on demand
DAMON Community is Waiting For Your Voices

- DMAON is evolving
 - It might not perfectly fit for your use case

- Don't forgive it or wait for someone to implement it; make your voice
 - Report your use case/test results and challenges
 - Ask questions and request features
 - Show your interest to known future works
 - Send patches
Overview

- **DAMON in a Nutshell (10 mins)**
- **Updates Since Kernel Summit 2022 (10 mins)**
- **Future Plans (15 mins)**
- **DAMON Community (5 mins)**
- **Conclusion and Remaining QnA**

- Each time-specified topic will get its own QnA
Conclusion

- DAMON answers “which memory is how frequently accessed for how long?”
- DAMOS makes the kernel *just works* in an access-aware manner
- Continuous development is being made
- Please participate in making it better for the community
Questions?

- You can also use
 - The maintainer: sj@kernel.org
 - Project webpage: https://damonitor.github.io
 - Kernel docs for admin and programmers
 - DAMON mailing list: damon@lists.linux.dev
 - DAMON Beer/Coffee/Tea Chat
Backup Slides