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Problem

Build times are held back by lexing and parsing needless tokens. 

Headers tend to grow over time (30+ years).

Removing/refactoring headers for a fast moving project like the kernel is painful.

Lack of tooling for the problem in general.
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Problem Cont.

● Many files become hundreds of times longer when preprocessed meaning 
millions of extra lines.

● Increased load of bad imports puts significant burden on the lexer and parser in 
particular, in addition to later parts of the compilation pipeline.

● Unnecessary imports lead to bigger compiler IR.
● Compiler frontend does not sufficiently address preprocessing bloat.
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Motivation

Ingo Molnar has been reworking the headers of the linux kernel to build faster. 

● v3: https://lore.kernel.org/lkml/YjBr10JXLGHfEFfi@gmail.com/
● v2: https://lore.kernel.org/lkml/Ydm7ReZWQPrbIugn@gmail.com/
● v1: https://lore.kernel.org/lkml/YdIfz+LMewetSaEB@gmail.com/

○ “The fast-headers tree offers a +50-80% improvement in absolute kernel build performance on 
supported architectures, depending on the config. This is a major step forward in terms of Linux 
kernel build efficiency & performance.”

○ How “we could automate” this? (Unanswered)
● tree: https://git.kernel.org/pub/scm/linux/kernel/git/mingo/tip.git/log/?h=sched/headers

Unclear what the status of this series is. We want to stop this from being an issue 
ever again. Can automation help?

https://lore.kernel.org/lkml/YjBr10JXLGHfEFfi@gmail.com/
https://lore.kernel.org/lkml/Ydm7ReZWQPrbIugn@gmail.com/
https://lore.kernel.org/lkml/YdIfz+LMewetSaEB@gmail.com/
https://lore.kernel.org/lkml/CAKwvOdmCgBKiikP2Ja4PfJmVEnzNPGYe19MNd++a5D-asCBG2w@mail.gmail.com/
https://git.kernel.org/pub/scm/linux/kernel/git/mingo/tip.git/log/?h=sched/headers
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Additional benefits

Improves :

● build times
● bisection times
● reduction times
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Include-What-You-Use

● Include What You Use (IWYU) is a tool for including only necessary header files.
● This helps make indirect includes direct, as well as remove dead includes. 
● This is a tool that is primarily used for C++ but can also be used for C. 
● Since the Linux Kernel is a large and organized code base it is possible to use 

IWYU. 
● The problem lies in the fact that not all headers are compatible with every 

configuration and IWYU has defaults that don’t work out of the box for the Linux 
kernel.
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Problems with IWYU continued

● Typedefs like int64_t are commonly defined in stdint.h
○ Linux doesn’t define int64_t in stdint.h.

○ Linux doesn’t have stdint.h.

○ Linux defines int64_t in include/linux/types.h.

○ IWYU has built in “accelerator tables” which map commonly referenced symbols to headers

○ IWYU uses these tables to recommend including stdint.h, which doesn’t exist!

○ Fixed by telling IWYU not to use the standard built in tables, or even ones curated to the kernel.

● When built with a -I, IWYU sometimes uses “header” as opposed to <header>.
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IWYU Mappings for avoiding asm/asm-generic

Mappings allow us to specify certain headers as private. 

This allows IWYU to propose changes that work across multiple configurations as 
headers that are exclusive to a few configurations are not included unless they were 
already in the file.  Maybe can be generated from include/asm-generic/Kbuild, 
and arch/*/include/asm/Kbuild.
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Problems with Macros

● IWYU doesn’t know when Macros are called/used
● Oftentimes IWYU rips headers with Macros out entirely. 
● Duplicate headers are always removed. This makes it impossible to use 

X-Macros (https://quuxplusone.github.io/blog/2021/02/01/x-macros/)
● Dealing with these will require manual effort.
● This could be assisted by changes in the kernel code to include IWYU Pragmas.
● Token pasting identifiers makes analysis tricky.

https://quuxplusone.github.io/blog/2021/02/01/x-macros/


Confidential + Proprietary

Going Forward with IWYU

● Just as IWYU has inclusion tables, it also has symbol tables.
● Calls and functions included in the header alongside macro definitions can be 

used to ensure that X-Macros function properly.
● Symbol tables form more accurate header inclusions and lower the amount of 

manual work needed for the automation process. 
● They are time consuming to create and must be kept in sync with kernel version.
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Some Statistics

For the x86 defconfig build lib/string.o:

● Pre IWYU Preprocessing Size: 23941 lines of Code 

● Post IWYU Preprocessing Size: 5092 lines of Code (78% smaller)

● Pre IWYU build time: .36 seconds

● Post IWYU build time: .12 seconds

When using an automated IWYU script on lib/string.c the actual binary code did not change 
across 3 distributions and configurations except for one LINE number used in a WARN_ON 
when dead headers were removed. 
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Progress so Far:

● On a machine with 128 cores an x86 defconfig all build takes around 72.3 
seconds

● After changes to 220 files it took around 69.0 seconds. 
● The script looked at 300 files in total and was able to automatically change only 

220.
● In the compile commands.json there are roughly 2700 files in a defconfig all, So 

there are significantly greater speed gains available.
● Over 1 million lines of code removed.
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Precompiled Headers

● Precompiled headers can speed up build times. Are the basis for C++20 
modules.

● This can be done with the most frequently occurring headers across all builds.
● Portability paper cuts (designed to mmap AST into memory; AST 

representations differ between compilers and also compiler versions).
● Some Candidates (forcibly injected into all TUs via -include ):

○ compiler_types.h
○ kconfig.h
○ compiler-version.h
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PCH and ABI
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Future research & tooling

● Precompiled headers
● Automating header refactoring

○ Statistical analyses
○ Given an identifier, where are the uses?
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Statistical analysis to inform header refactoring

IWYU is only updating the header 
include list in .c files. A potentially 
more effective way could be to 
actually break up the headers 
themselves.

We can use hierarchical 
agglomeration or other graph 
partitioning techniques to essentially 
break a fully connected graph of 
symbols into 2 parts.
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Basic Hierarchical Agglomeration of linux/types.h
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Future research & tooling

● Precompiled headers
● Automating header refactoring

○ Statistical analyses
○ Given an identifier, where are the uses?

● llvm-extract equivalent for C code
○ Given an identifier and a source file defining it, move it to a new file, update uses

● modpost improvements
○ Not specific to kernel headers
○ commit 4074532758c5 ("modpost: Optimize symbol search from linear to binary search") was a 

nice recent win
■ “saves a few seconds of wall time for defconfig builds, but can save several minutes on 

allyesconfigs”
● Detecting circular includes
● <What other tooling should we be looking to build?>


