
  1

Synthesized Call Frame Information
for hand-written assembly

in GNU assembler

Indu Bhagat
Linux Toolchains @ Oracle



  2

● Current state of SCFI
● Does this help the current asm in the Linux 

kernel ?
● What other patterns should be accommodated 

to make this more useful ?

Synthesizing Call Frame Information



  3

● From: User writes 
asm; Includes the 
necessary CFI 
annotations

● To: User write asm; 
Synthesize CFI in 
GAS

AS CFI directives



  4

● Synthesize Call Frame Information[1] for assembly 
code
– Hand-written asm (.S files)
– Inline asm (asm () blocks)

● [1]Synthesize CFI rules for
– CFA and callee-saved registers

● => ABI / calling conventions are followed

SCFI mission statement



  5

● TL;DR – No, but looks doable[1]
● Some directives indeed require user input

– .cfi_signal_frame
– .cfi_sections
– .cfi_label

● [1] There are constraints that must be satisfied by 
input asm

Can all CFI directives be 
synthesized for all input asm?



  6

● Work in progress: --scfi=all (Aimed for hand-written asm)
– Default, equivalent to --scfi

– Ignores most CFI directives if present in input asm
● Except .cfi_signal_frame, .cfi_label, .cfi_sections

● On the roadmap: For inline-asm, add new --scfi=inline
– Does not ignore compiler generated CFI
– Identifies #APP...#NO_APP and synthesizes CFI

● Also on roadmap: aarch64 support
● [binutils-gdb] [[PATCH, V2 00/10] Synthesize CFI for hand-written asm] 

https://sourceware.org/pipermail/binutils/2023-October/130210.html

New option --scfi[=all,none]



  7

Discuss: How much does each constraint limit 
practical usages of asm in the Linux kernel ?

Eligibility Criteria, a.k.a., “Constraints”
for hand-written (non-inline) asm



  8

● ABI/calling convention conformant code
● Amenable to asynchronous stack unwinding
● CFA must be REG_SP or REG_FP based
● CFA base register must be traceable at all times
● Code with indirect branches, jump tables not 

supported

Trailer...



  9

● Must begin with
– .type name, @function ## beginning of func

● Closing with .size name, .-name ## end of func
– Recommended if single section
– Necessary if interleaving text sections (e.g., when 

using .section .text.unlikely / .section .rodata / .pushsection / .po
psection etc.)

● PS: Not applicable for inline asm (#APP...#NO_APP)

(#1) Identifying beginning and end 
of code block



  10

● Issue: It is not possible to 
reconstruct the complete 
control flow graph from 
assembly
– Indirect jumps, jump table

● Warning: Untraceable 
control flow for func ‘foo’. 
Skipping SCFI.

(#2) Deciphering the control flow 
unambiguously



  11

● ABI/calling conventions
– (#2) Symmetric save and restore

● Warning: SCFI: asymetrical register restore

– (#3) Balanced stack at return
● Detection and Warning TBD

● Amenable to asynchronous stack tracing unwinding
– (#4) Code must not clobber the base register used for CFA 

tracking in an untraceable way

Input asm follows some conventions



  12

● DWARF5 says CFA: [reg + offset],  or DWARF 
expression

● Static stack allocation:
– (#4a) Stack location (REG_SP) is traceable at each save 

(push) and restore (pop) of callee-saved registers
● Dynamic stack allocation: 

– (#4b), (#5) next...

(#4) Base register for CFA must be 
traceable at all times



  13

(#4b) Switch to reg FP
for dyn stack alloc

● DRAP usage is not 
supported, but can be 
accommodated.

● Switch to any other 
callee-saved register is 
NOT supported.

(#5) CFA base register must be
REG_SP or REG_BP



  14

● ABI/calling convention conformant code
● Amenable to asynchronous stack unwinding
● CFA must be REG_SP or REG_FP based
● CFA base register must be traceable at all times
● Code with indirect branches, jump tables not 

supported

In Summary, SCFI has some 
eligibility criteria...



  15

● How much does this limit practical usages of asm 
in the Linux kernel ?

● What other patterns should be accommodated to 
make this more useful ?

● How is the stack trace info of the alternatives 
currently being updated when executable code is 
patched ?

Discuss



  16

Extra



  17
.type and .size are needed to make boundaries 

unambiguous when section interleaving



  18


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

