
Graph-based ABI analysis
for fun and profit

Matthias Männich <maennich@android.com> | Giuliano Procida <gprocida@android.com>

mailto:maennich@android.com
mailto:gprocida@android.com

Who are we?

Android Systems Team @ Google

● Linux Kernel in Android

● Generic Kernel Image (GKI)

● Systems libraries and components

https://source.android.com/

https://source.android.com/

Why do we care?

Android system software - safer upgrades

● Android (Common) Kernels
○ Generic Kernel Image (GKI)

with Kernel-Module-Interface (KMI)
○ ABI stability guarantees within releases

● Userspace Libraries
○ API versions
○ Android NDK

Mission: Capture exposed ABI / API surfaces and detect changes at build time.

https://source.android.com/docs/core/architecture/kernel
https://source.android.com/docs/core/architecture/kernel/abi-monitor

https://source.android.com/docs/core/architecture/kernel
https://source.android.com/docs/core/architecture/kernel/abi-monitor

What do we mean by an ABI?

ABI stands for "application binary interface". ABI compatibility means that software components can work
together at runtime - link and type compatibility

● library + binary
● kernel + module

ABI representations capture enough symbol and type information to be able to determine compatibility.

Other aspects of ABI compatibility may or may not be represented:

● machine type
● ISA
● calling convention

ABI Stability Monitoring through Static Analysis

Comparison of Binaries against ABI baseline

1. Extraction of an ABI representation
from ELF +
○ DWARF
○ CTF
○ BTF
○ ?

2. Comparison

3. Reporting

Baseline Binary
(committed sources)

Candidate
Binary

(proposed patch)

ABI
Representation

ABI
Representation

ABI
Comparison ?Extract Type

Information

Prior Art - libabigail
libabigail (https://sourceware.org/libabigail/)

● de facto ABI monitoring tool
● open source
● actively maintained
● broad compiler, language and package support
● packaged for RedHat, Debian, …

Tools

● abidw - ABI extraction - used until Android 13
● abidiff - ABI comparison - used until Android 12
● and others (e.g. package comparison)

https://sourceware.org/libabigail/

History: BTF and btdiff
BTF is the eBPF Type Format

● alternative to DWARF for type information
● much smaller and potentially shippable in production binaries

(e.g. 124MB DWARF vs 1.5MB BTF)
● limited non-GCC toolchain support

btfdiff - intern project to explore using BTF

● BTF reader, building a graph
● comparison algorithm with memoisation

○ incomplete handling of graph cycles
○ in-line diff reporting

● memoised type name generation
https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
https://docs.kernel.org/bpf/btf.html#bpf-type-format-btf
https://android.googlesource.com/platform/external/stg/+/refs/heads/main/btf_reader.cc

https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
https://docs.kernel.org/bpf/btf.html#bpf-type-format-btf
https://android.googlesource.com/platform/external/stg/+/refs/heads/main/btf_reader.cc

History: Cycle-Aware Graph Comparison Algorithm
ABI comparison is graph comparison, traversing an abstract
comparison graph whose nodes are pairs of concrete nodes.

Requirements

● be easily extensible
● efficiently handle repeated comparisons
● correctly handle cycles

The development of this required research into classic graph
algorithms and experimentation with much simpler graphs.

In a comparison graph SCC (strongly connected
component), differences between any node pair imply
differences between all pairs.

Implementation

● simple recursive comparison
● with memoisation
● and SCC handling

SCC detection and the comparison logic must happen
simultaneously to avoid actually building a concrete
comparison graph.

The path-based strong component algorithm is a DFS
plus some state management logic.

STG's SCC finder encapsulates this state and logic and
can be added to any recursive algorithm which might
encounter graph cycles.

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/doc/SCC.md

https://en.wikipedia.org/wiki/Path-based_strong_component_algorithm
https://android.googlesource.com/platform/external/stg/+/refs/heads/main/doc/SCC.md

History: Cycle-Aware Graph Comparison Algorithm

typedef … foo;

struct N {
 struct N * next;
 foo left;
 foo right;
};

struct N x;
struct N * z;

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/doc/SCC.md

foo

struct N * struct N

z x

How to compare?

Cycles?

Result caching?

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/doc/SCC.md

History: Cycle-Aware Graph Comparison Algorithm

typedef … foo;

struct N {
 struct N * next;
 foo left;
 foo right;
};

struct N x;
struct N * z;

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/doc/SCC.md

foo

struct N * struct N

z x

Strongly Connected

Components (SCC)!

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/doc/SCC.md

History: btfdiff → stgdiff

From research vehicle to Android Common Kernel ABI monitoring

● separate diff graph creation and report generation
● multiple report formats, including:

○ flat: break the diff graph into smaller subgraphs
○ small: flat + omit uninteresting subgraphs

● libabigail XML reader
○ abidw + stgdiff = ABI monitoring solution

● CLI supports all combinations of input and output formats

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/doc/DIFFS.md

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/doc/DIFFS.md

History: STG (Symbol Type Graph)

● C++17 code base

● Hosted within AOSP (Android Open Source Project)

● Open Source / Apache2 + LLVM Exception

● Built with CMake, standalone prebuilts available

https://android.googlesource.com/platform/external/stg

https://android.googlesource.com/kernel/prebuilts/build-tools/+/refs/heads/main/linux-x86/bin/
https://android.googlesource.com/platform/external/stg

diff example - changed node distance from root node ~8
@@ -1,13 +1,13 @@
 struct A {
- int x;
+ unsigned int x;
 };

 struct B {
 struct A a;
 };

 struct C {
 struct B b;
 };

 struct C c;

diff format: plain - gives full context but does not scale
@@ -1,13 +1,13 @@
 struct A {
- int x;
+ unsigned int x;
 };

 struct B {
 struct A a;
 };

 struct C {
 struct B b;
 };

 struct C c;

variable symbol 'struct C c' changed
 type 'struct C' changed
 member 'struct B b' changed
 type 'struct B' changed
 member 'struct A a' changed
 type 'struct A' changed
 member changed from 'int x' to 'unsigned int x'
 type changed from 'int' to 'unsigned int'

diff format: flat - chops up the diff graph
variable symbol 'struct C c' changed
 type 'struct C' changed

type 'struct C' changed
 member 'struct B b' changed
 type 'struct B' changed

type 'struct B' changed
 member 'struct A a' changed
 type 'struct A' changed

type 'struct A' changed
 member changed from 'int x' to 'unsigned int x'
 type changed from 'int' to 'unsigned int'

@@ -1,13 +1,13 @@
 struct A {
- int x;
+ unsigned int x;
 };

 struct B {
 struct A a;
 };

 struct C {
 struct B b;
 };

 struct C c;

type 'struct A' changed
 member changed from 'int x' to 'unsigned int x'
 type changed from 'int' to 'unsigned int'

diff format: small - discards chunks with no internal differences
@@ -1,13 +1,13 @@
 struct A {
- int x;
+ unsigned int x;
 };

 struct B {
 struct A a;
 };

 struct C {
 struct B b;
 };

 struct C c;

History: C++ Support for Userspace ABI Monitoring

intern project to model C++ type system features

● aim: model C++ ABIs, read full libabigail XML syntax
● design decisions

○ access specifiers (public, protected, private) are not modelled
○ methods modelled with a new kind of node
○ references modelled by tweaking pointer nodes
○ …

● parsing, comparison and reporting code changes
○ with full test coverage

Requirements

● version control friendly
○ text
○ minimal graph changes cause minimal

representation changes
○ rebase and merge usually work

● fast to read and write
● debuggable without special tools
● extensible

History: native format
Implementation

● protocol buffer definition
○ corresponding to the graph model
○ heavily tested technology
○ wide support

● standard protobuf text format
○ with minor output tweaks

● stable output
○ external IDs generated as stable hashes
○ deterministic node order

● versioned
○ reader supports older versions

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/proto_writer.cc

https://protobuf.dev/
https://android.googlesource.com/platform/external/stg/+/refs/heads/main/proto_writer.cc

struct A {
 int x;
};

struct B {
 struct A a;
};

struct C {
 struct B b;
};

struct C c;

Example

struct_union {

 id: 0xc1147dbd

 kind: STRUCT

 name: "A"

 definition {

 bytesize: 4

 member_id: 0xa0d54b05

 }

}

struct_union {

 id: 0x207acb9f

 kind: STRUCT

 name: "B"

 definition {

 bytesize: 4

 member_id: 0x801a8063

 }

}

struct_union {

 id: 0xc0318865

 kind: STRUCT

 name: "C"

 definition {

 bytesize: 4

 member_id: 0x4cb80257

 }

}

version: 2

root_id: 0x84ea5130

primitive {

 id: 0x6720d32f

 name: "int"

 encoding: SIGNED_INTEGER

 bytesize: 4

}

member {

 id: 0x801a8063

 name: "a"

 type_id: 0xc1147dbd

}

member {

 id: 0x4cb80257

 name: "b"

 type_id: 0x207acb9f

}

member {

 id: 0xa0d54b05

 name: "x"

 type_id: 0x6720d32f

}

elf_symbol {

 id: 0x2230fb28

 name: "c"

 is_defined: true

 symbol_type: OBJECT

 type_id: 0xc0318865

 full_name: "c"

}

interface {

 id: 0x84ea5130

 symbol_id: 0x2230fb28

}

New driver for ABI extraction

● reads any supported input
○ BTF, XML, ELF/DWARF, STG

● merges multiple inputs with type unification
○ used to obtain a single ABI from vmlinux + *.ko

● optionally applies a symbol filter
● deduplicates nodes by identifying equal subgraphs and rewriting the graph
● optionally outputs the resulting graph in the native format

History: stg

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/doc/stg.md

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/doc/stg.md

Support for:

● Clang-compiled Linux kernel and modules
● ELF: ksymtab, symbol CRCs and namespaces
● DWARF: versions 4 and 5, C language
● DWARF: C++ and GCC added incrementally

With:

● type unification, type normalisation, graph rewriting and more

History: ELF / DWARF reader

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/dwarf_processor.cc

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/dwarf_processor.cc

G is for Graph - the STG data structure

Aims:

● clear semantics
● maintainability
● high performance

Achieved via:

● simplicity
● separation of code and data
● powerful abstractions
● carefully-selected concrete data structures

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/graph.h

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/graph.h

Nodes

● are identified by a numerical ID
● have attributes (name, size, …)
● refer to other nodes (type, …) by ID

And that's it!

● nodes are boring values
● no inheritance or methods
● no parent-child containment relationships

Concrete graph representation (currently)

● a vector per node kind
● an indirection vector (ID → (kind, offset))
● all hidden behind access abstractions

Graph Nodes - and edges
Node Kinds

● Special
● Pointer / Reference
● Pointer to Member
● Typedef
● Qualified
● Primitive
● Array
● Base Class
● Method
● Member
● Struct / Union
● Enumeration
● Function
● Elf Symbol
● Interface

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/graph.h

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/graph.h

Naive recursive algorithms

● straightforward to write
● C++ function objects
● node kind overloaded function application
● arbitrary internal state

Examples:

● native format writer
● stable ID generation for the native format
● memoised type name generation for diff reporting

Graph Algorithms - node kind polymorphic functions
Cycle-aware recursive algorithms

● relatively easy to write
● just add:

○ SCC finder object
○ calls to SCC open / close
○ pending / completed node handling

Examples:

● efficient ABI difference graph generation
● memoised equality / inequality check
● node fingerprinting (bucketing) for faster

deduplication

stg: Usage Examples (simple workflow)
Compile a source file with debugging information

$ cc -c -g test.c -o test.o

Extract ABI representation

$ stg --elf test.o -o test.stg

Compare against baseline

$ stgdiff -s test.stg expected.stg -o -

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/doc/stg.md

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/doc/stg.md

Some things already mentioned, plus:

● concrete graph representation tuned for space and time - 10 variations tested
● jemalloc or tcmalloc are very cheap constant-factor wins for large hash tables
● very simple dense data structures represent node sets and node mappings
● range reduction optimisation to avoid quadratic time costs processing multiple inputs
● fingerprinting optimisation to avoid quadratic time costs during node deduplication

Some numbers:

● vmlinux ~18M DIEs converted to ~12M STG nodes and reduced to ~45k STG nodes in ~18s
● → DWARF reader (including type unification and deduplication) ~1M DIEs/s
● vmlinux ABI STG representation read x2 ~175ms, comparison ~33ms
● → graph read ~0.5M nodes/s
● → graph comparison (excluding report serialisation) ~1.37M pairs/s

Performance

https://jemalloc.net/
https://github.com/google/tcmalloc

Demo

Where are we going?
Features

● more control over type definitions
○ implementation types can leak into ABIs

● named type filtering
● macro definition model
● improved CLI ergonomics (stgdiff → stg diff)

Improved DWARF Support

● more compiler / language / DWARF versions
● Support for different ABI models (e.g. Rust)
● backed by a comprehensive test suite

Test Suite Publication

● extraction and comparison tests

Other Inputs

● CTFv3
● archives (.rpm, .deb etc.)
● Compiler-generated representation

targeting ABI inspection (e.g. CTF, but with support
for more languages (like C++) and compilers (like
Clang)) ?

Packaging STG for Distributions

● ArchLinux - done (AUR)
● Debian
● Fedora / RedHat …
● SuSE
● …

https://android.googlesource.com/platform/external/stg/+/refs/heads/main/test_cases/
https://aur.archlinux.org/packages/stg-git

Resources
STG

● Source code: https://android.googlesource.com/platform/external/stg/
● LPC 2022 > Android MC > ABI Graphs: https://lpc.events/event/16/contributions/1335/
● Contact: kernel-team@android.com

Languages and Type Systems

● C and C++: https://cppreference.com/

Specifications

● ABI: https://itanium-cxx-abi.github.io/cxx-abi/abi.html
● BTF: https://www.kernel.org/doc/html/latest/bpf/btf.html
● CTF: https://github.com/oracle/binutils-gdb/wiki
● DWARF: https://dwarfstd.org/
● ELF: https://refspecs.linuxfoundation.org/elf/elf.pdf

https://android.googlesource.com/platform/external/stg/
https://lpc.events/event/16/contributions/1335/
mailto:kernel-team@android.com
https://cppreference.com/
https://itanium-cxx-abi.github.io/cxx-abi/abi.html
https://www.kernel.org/doc/html/latest/bpf/btf.html
https://github.com/oracle/binutils-gdb/wiki
https://dwarfstd.org/
https://refspecs.linuxfoundation.org/elf/elf.pdf

Questions?

Graph-based ABI analysis for fun and profit

Matthias Männich <maennich@android.com> | Giuliano Procida <gprocida@android.com>

mailto:maennich@android.com
mailto:gprocida@android.com

