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Homa Introduction
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Why TCP is Wrong for Data Center?

● Designed for wide-area networks

● Connections

● Stream orientation

● Fair scheduling

● Sender-driven congestion control

● It doesn’t take advantage of in-network priority queues.

● In-order delivery, restricting opportunities for load balancing
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Homa Protocol Introduction

● Designed for datacenter networks with extremely low latencies

● Connectionless, no connection cost, no long life connection state

● Message based protocol

● SRPT(Shortest Remaining Process Time first)

● Use in-network priorities

● Receiver-driven packet scheduling

● Overcommitment
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Overview
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Sender – SRPT and Pacer
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In-network priorities
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Scheduled packets
Unscheduled packets 
(RTTBytes)
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Server – Packet Scheduling

new grant offset= received + RTTBytes

RTTBytes is a pre-set fixed value
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Limitations of Homa as RPC transport protocol
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Inefficient Pipelining for Large Message
● Homa is message-based protocol, while ensuring complete message delivery, it 

hinders efficient pipelining. As a result, for large RPC messages(size > 50k), Homa is 
not as good as TCP.

Non-standard Socket API interface 
● It is not easy to map Homa RPC ID to existing RPC framework.
● No long lived RPC: A stream RPC is consisted of many Homa RPCs, which incurs 

the overhead of creating and reclaiming them.

Limitations of Homa as RPC transport protocol
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Performance is sensitive to RTTBytes Config
● Manually config RTTBytes can be inconvenient
● Single preset value is not enough for diverse RTT and receiver downlink 

bandwidth.

Weak Congestion Control when RTT is larger than 20 us
● High RTTBytes can more easily lead to incast congestion
● Low RTTBytes is not able to cover RTT

Limitations of Homa as RPC transport protocol
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Homa cannot coexist harmoniously with TCP
● In practice, network resources need to be shared among protocols like TCP
● Homa assumes the bandwidth is all used by itself. If the bandwidth is shared by 

TCP, Homa maybe over-generous on unscheduled bytes, and overgrant 
scheduled bytes.

Homa inactively handle incast
● Homa assumes that the most severe forms of incast are predictable because 

they are self-inflicted by outgoing RPCs.
● Homa assumes the incast where several machines simultaneously send 

requests to one server is rare.

Limitations of Homa as RPC transport protocol
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Unscheduled Packet Incasting

Receiver

senderN

sender1

sender2

Buffer build up when there 
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Unscheduled 
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Static Congestion Window is Insufficient 

Scheduled packets
Unscheduled packets 
(unsched_window)

Homa message 

sender receiver
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Scheduled Packet 

Unscheduled Packet 

Receiver collects incoming 
msg info and give grants to 
senders
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TOR

Unscheduled Window and Scheduled Window need different values!

new grant offset= received + sched_window
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Homa Congestion Control Enhancements
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Homa Congestion Control Enhancements 

Dynamic Per Peer Adjustable Window 

● Real-time peer RTT detection

● RTT-informed congestion detection

● Adaptive per-peer adjustable unscheduled/scheduled window based on congestion
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Real-time Peer RTT Detection

Homa softIRQ   Homa softIRQ

RTT_PROBE

RTT_PROBE_RESP (t1, my_link_mbps)

(t1, my_link_mbps)

timestamp duplicated 

Timestamp t1

Timestamp t2

peer_rtt_min = min(peer_rtt_min, peer_rtt_recent)

peer_rtt_recent = t2 -t1

peer_rtt_min will be accurate over 
time: using peer_rtt_min to 
calculate RTTBytes 

Client/Server Peer

19



RTT Informed Congestion Detection  
peer_rtt_min: The minimum RTT value detected over time for this peer

peer_rtt_low: The low threshold of RTT

peer_rtt_mid: The middle point of RTT

peer_rtt_high: The high threshold of RTT

peer_rtt_low = peer_rtt_min * 2

peer_rtt_mid = peer_rtt_low * 2

peer_rtt_high = peer_rtt_mid * 2

IF  peer_rtt_recent >  peer_rtt_high

Set congestion To TRUE

ENDIF 
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Sender - Dynamic adjusting unscheduled window

unsched_window = peer_rtt_recent * peer_link_mbps / 8

21



Sender - Dynamic adjusting unscheduled window

unsched_window = peer_rtt_recent * peer_link_mbps / 8

IF  peer_rtt_recent < peer_rtt_mid

peer_rtt_unsched = peer_rtt_low

ELIF peer_rtt_recent < peer_rtt_high

peer_rtt_unsched = peer_rtt_low - 

             (peer_rtt_recent - peer_rtt_mid) * 3 / 8

ELSE

peer_rtt_unsched = rtt_min / 2

ENDIF

unsched_window = peer_rtt_unsched * peer_link_mbps / 8 22



Sender - Unscheduled Ratio

Unscheduled_ratio = Total unscheduled packets / Total length of all messages

IF `unscheduled_ratio <= 40%` AND `pacer throttle list is not empty`
  SET unsched_window To unsched_window / 2

ENDIF
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Receiver - Scheduled Window

Use peer_rtt_grant as reference RTT to calculate scheduled window for grant:

peer_rtt_grant = 3 * peer_rtt_min;

scheduled_window = peer_rtt_grant * local_link_mbps / 8;

max_incomming = scheduled_window * max_overcommit;

24



Performance is nearly independent to RTTBytes Config

● Instead of fixed and static RTT, we now use real-time RTT.

Homa harmoniously coexist with TCP
● Homa can be aware of the existence of other protocols’ traffic by feeling the 

turbulence of RTT.

Homa actively handle incast
● Incast can be reflected by high RTT, then senders can adjust the unscheduled 

window dynamically.

Homa Congestion Control Enhancements 
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Performance Evaluation
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25G network
CPU: Intel(R) Xeon(R) Platinum 8163 (96 core,2.50GHz) 
RAM: 400G DIMM DDR4
NIC: Mellanox ConnectX–4 Lx 25 Gbp 
TOR Switch; Arista DCS-7050SX3-48YC12-F 25G ports

100G network
CPU: Intel(R) Xeon(R) Silver 4314 (64 cores, 2.4 GHz) 
RAM: 400 GB DIMM DDR4 
NIC: Mellanox Technologies MT28841 dual-port 100Gb/s
TOR Switch: Ruijie Networks RG-S6580-48CQ8QC 100G ports

Testbed Setup
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We use the same workload in [2] to test. Since Homa congestion control enhancements 
only have a trivial effect when message size is small, we focus on workload W4, W5 and 
other fixed-size long messages.

Testbed Setup
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Test application cp_node is a program to test the performance(including 
throughput, latency, etc) of Homa or TCP. In our test, we mainly tweak some 
parameters for clients to adjust the behavior of the client node.

- workload, workload to run the test, could be fixed-size or workload type.

- ports, for clients, the number of ports on which to send requests.

Test Tool
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https://github.com/PlatformLab/HomaModule/blob/main/util/cp_node.cc


Basic Performance Setup 
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Basic Performance - 25Gbps - Throughput 
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Basic Performance - 100Gbps - Throughput 
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Basic Performance - 25Gbps - Latency 
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Basic Performance - 100Gbps - Latency 
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Incast - Setup
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Long Message Incast - Latency
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Split Traffic - Setup
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Split Traffic - Throughput
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Split Traffic - Latency
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Homa RPC Streaming Enhancements
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Homa RPC Streaming
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Homa RPC Streaming Enhancements
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Future Improvements
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• More accurate RTT measurement (Fabric + NIC + software delay)

• Optimize the dynamic window algorithm (Any thoughts?)

• Optimize pacer

• Zero-copy

• More tests for stream RPC enhancements

Future Improvements

44



1. Homa is a very promising protocol in RPC context

2. Automatic and Dynamic RTTBytes is a better choice

3. Dynamic per peer adjustable window
● Improve performance on throughput and latency

● Buffer Overlimit Resilience in Incast

● Compatibility with TCP Traffic

Conclusion
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Q & A
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