
Leverage Homa: Enhancing Homa Linux
for Efficient RPC Transportation

Presenter: Xiaochun Lu, Zijian Zhang

System Technologies and Engineering Team

Agenda

• Homa Introduction
• Limitation of Homa in RPC context
• Homa Congestion Control Enhancements
• Homa RPC Streaming Enhancements
• Future Improvements
• Conclusion
• Q&A

2

Homa Introduction

3

Why TCP is Wrong for Data Center?

● Designed for wide-area networks

● Connections

● Stream orientation

● Fair scheduling

● Sender-driven congestion control

● It doesn’t take advantage of in-network priority queues.

● In-order delivery, restricting opportunities for load balancing

4

Homa Protocol Introduction

● Designed for datacenter networks with extremely low latencies

● Connectionless, no connection cost, no long life connection state

● Message based protocol

● SRPT(Shortest Remaining Process Time first)

● Use in-network priorities

● Receiver-driven packet scheduling

● Overcommitment

5

Overview

Scheduled packets Unscheduled packets

Homa message

sender receiver
Grant

Scheduled Packet

Unscheduled Packet

Receiver collects incoming
msg info and give grants to
senders

1
2

3

TOR

6

Sender – SRPT and Pacer

Homa message1

Homa message2

Homa message3

Scheduled Packet

Unscheduled Packet

NIC

pacer

message2 first

send blindly

7

In-network priorities

Message1
len=1k, prio=3

receiverMessage2
len=10k, prio=2

Message3
len=50k, prio=1

TOR

8

Scheduled packets
Unscheduled packets
(RTTBytes)

Homa message

sender receiver
Grant

Scheduled Packet

Unscheduled Packet

Receiver collects incoming
msg info and give grants to
senders

1
2

3

Server – Packet Scheduling

new grant offset= received + RTTBytes

RTTBytes is a pre-set fixed value
9

Receiver1

Grant

Grant

Sender n

Sender1

Sender2

Potential buffer
build up due to
overcommitment

Granted Scheduled
Packet

Ungranted Scheduled
Packet

Grant

Server – Controlled Overcommitment

Message 1

Message 2

Receiver2
Grant

10

Limitations of Homa as RPC transport protocol

11

Inefficient Pipelining for Large Message
● Homa is message-based protocol, while ensuring complete message delivery, it

hinders efficient pipelining. As a result, for large RPC messages(size > 50k), Homa is
not as good as TCP.

Non-standard Socket API interface
● It is not easy to map Homa RPC ID to existing RPC framework.
● No long lived RPC: A stream RPC is consisted of many Homa RPCs, which incurs

the overhead of creating and reclaiming them.

Limitations of Homa as RPC transport protocol

12

Performance is sensitive to RTTBytes Config
● Manually config RTTBytes can be inconvenient
● Single preset value is not enough for diverse RTT and receiver downlink

bandwidth.

Weak Congestion Control when RTT is larger than 20 us
● High RTTBytes can more easily lead to incast congestion
● Low RTTBytes is not able to cover RTT

Limitations of Homa as RPC transport protocol

13

Homa cannot coexist harmoniously with TCP
● In practice, network resources need to be shared among protocols like TCP
● Homa assumes the bandwidth is all used by itself. If the bandwidth is shared by

TCP, Homa maybe over-generous on unscheduled bytes, and overgrant
scheduled bytes.

Homa inactively handle incast
● Homa assumes that the most severe forms of incast are predictable because

they are self-inflicted by outgoing RPCs.
● Homa assumes the incast where several machines simultaneously send

requests to one server is rare.

Limitations of Homa as RPC transport protocol

14

Unscheduled Packet Incasting

Receiver

senderN

sender1

sender2

Buffer build up when there
are multiple unscheduled
senders

When Detecting Congestion, it's essential to dynamically
reduce unscheduled Window to prevent congestion

Unscheduled
Packet

15

Static Congestion Window is Insufficient

Scheduled packets
Unscheduled packets
(unsched_window)

Homa message

sender receiver
Grant

Scheduled Packet

Unscheduled Packet

Receiver collects incoming
msg info and give grants to
senders

1
2

3

TOR

Unscheduled Window and Scheduled Window need different values!

new grant offset= received + sched_window

16

Homa Congestion Control Enhancements

17

Homa Congestion Control Enhancements

Dynamic Per Peer Adjustable Window

● Real-time peer RTT detection

● RTT-informed congestion detection

● Adaptive per-peer adjustable unscheduled/scheduled window based on congestion

18

Real-time Peer RTT Detection

Homa softIRQ Homa softIRQ

RTT_PROBE

RTT_PROBE_RESP (t1, my_link_mbps)

(t1, my_link_mbps)

timestamp duplicated

Timestamp t1

Timestamp t2

peer_rtt_min = min(peer_rtt_min, peer_rtt_recent)

peer_rtt_recent = t2 -t1

peer_rtt_min will be accurate over
time: using peer_rtt_min to
calculate RTTBytes

Client/Server Peer

19

RTT Informed Congestion Detection
peer_rtt_min: The minimum RTT value detected over time for this peer

peer_rtt_low: The low threshold of RTT

peer_rtt_mid: The middle point of RTT

peer_rtt_high: The high threshold of RTT

peer_rtt_low = peer_rtt_min * 2

peer_rtt_mid = peer_rtt_low * 2

peer_rtt_high = peer_rtt_mid * 2

IF peer_rtt_recent > peer_rtt_high

Set congestion To TRUE

ENDIF
20

Sender - Dynamic adjusting unscheduled window

unsched_window = peer_rtt_recent * peer_link_mbps / 8

21

Sender - Dynamic adjusting unscheduled window

unsched_window = peer_rtt_recent * peer_link_mbps / 8

IF peer_rtt_recent < peer_rtt_mid

peer_rtt_unsched = peer_rtt_low

ELIF peer_rtt_recent < peer_rtt_high

peer_rtt_unsched = peer_rtt_low -

 (peer_rtt_recent - peer_rtt_mid) * 3 / 8

ELSE

peer_rtt_unsched = rtt_min / 2

ENDIF

unsched_window = peer_rtt_unsched * peer_link_mbps / 8 22

Sender - Unscheduled Ratio

Unscheduled_ratio = Total unscheduled packets / Total length of all messages

IF `unscheduled_ratio <= 40%` AND `pacer throttle list is not empty`
 SET unsched_window To unsched_window / 2

ENDIF

23

Receiver - Scheduled Window

Use peer_rtt_grant as reference RTT to calculate scheduled window for grant:

peer_rtt_grant = 3 * peer_rtt_min;

scheduled_window = peer_rtt_grant * local_link_mbps / 8;

max_incomming = scheduled_window * max_overcommit;

24

Performance is nearly independent to RTTBytes Config

● Instead of fixed and static RTT, we now use real-time RTT.

Homa harmoniously coexist with TCP
● Homa can be aware of the existence of other protocols’ traffic by feeling the

turbulence of RTT.

Homa actively handle incast
● Incast can be reflected by high RTT, then senders can adjust the unscheduled

window dynamically.

Homa Congestion Control Enhancements

25

Performance Evaluation

26

25G network
CPU: Intel(R) Xeon(R) Platinum 8163 (96 core,2.50GHz)
RAM: 400G DIMM DDR4
NIC: Mellanox ConnectX–4 Lx 25 Gbp
TOR Switch; Arista DCS-7050SX3-48YC12-F 25G ports

100G network
CPU: Intel(R) Xeon(R) Silver 4314 (64 cores, 2.4 GHz)
RAM: 400 GB DIMM DDR4
NIC: Mellanox Technologies MT28841 dual-port 100Gb/s
TOR Switch: Ruijie Networks RG-S6580-48CQ8QC 100G ports

Testbed Setup

27

We use the same workload in [2] to test. Since Homa congestion control enhancements
only have a trivial effect when message size is small, we focus on workload W4, W5 and
other fixed-size long messages.

Testbed Setup

28

Test application cp_node is a program to test the performance(including
throughput, latency, etc) of Homa or TCP. In our test, we mainly tweak some
parameters for clients to adjust the behavior of the client node.

- workload, workload to run the test, could be fixed-size or workload type.

- ports, for clients, the number of ports on which to send requests.

Test Tool

29

https://github.com/PlatformLab/HomaModule/blob/main/util/cp_node.cc

Basic Performance Setup

30

Basic Performance - 25Gbps - Throughput

31

Basic Performance - 100Gbps - Throughput

32

Basic Performance - 25Gbps - Latency

33

Basic Performance - 100Gbps - Latency

34

Incast - Setup

35

Long Message Incast - Latency

36

Split Traffic - Setup

37

Split Traffic - Throughput

38

Split Traffic - Latency

39

Homa RPC Streaming Enhancements

40

Homa RPC Streaming

41

Homa RPC Streaming Enhancements

42

Future Improvements

43

• More accurate RTT measurement (Fabric + NIC + software delay)

• Optimize the dynamic window algorithm (Any thoughts?)

• Optimize pacer

• Zero-copy

• More tests for stream RPC enhancements

Future Improvements

44

1. Homa is a very promising protocol in RPC context

2. Automatic and Dynamic RTTBytes is a better choice

3. Dynamic per peer adjustable window
● Improve performance on throughput and latency

● Buffer Overlimit Resilience in Incast

● Compatibility with TCP Traffic

Conclusion

45

Q & A

46

References

1. John Ousterhout Stanford University, “A Linux Kernel Implementation of the Homa Transport Protocol”, 2021
USENIX Annual Technical Conference.

2. Radhika Mittal∗ (UC Berkeley), Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia
Ghobadi∗ (Microsoft), Amin Vahdat, Yaogong Wang, David Wetherall, David Zats, “TIMELY: RTT-based
Congestion Control for the Datacenter” SIGCOMM ’15 August 17-21, 2015, London, United Kingdom

3. Behnam Montazeri, Yilong Li, Mohammad Alizadeh† , and John Ousterhout Stanford University, +MIT,
“Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Priorities”,SIGCOMM ’18, August
20-25, 2018, Budapest, Hungary

4. John Ousterhout https://homa-transport.atlassian.net/wiki/spaces/HOMA/pages/262178/Homa+Projects

47

https://homa-transport.atlassian.net/
https://homa-transport.atlassian.net/wiki/spaces

