
When BPF programs need to die
Exploring the design space for early BPF termination

Raj Sahu <raj.sahu@vt.edu>
Dan Williams <djwillia@vt.edu>

mailto:raj.sahu@vt.edu
mailto:djwillia@vt.edu

What makes BPF so cool
BPF : Safe kernel extensions

Verifier guarantees :

ㄴ Memory Safety :
No {Use-after-Free, Null dereference, Resource leaks}

ㄴ Guaranteed Termination : No {Infinite Loops}

Untrusted code cannot crash (Memory Safety) or stall (Guaranteed Termination) kernel.

2

Termination as a guarantee
1. Verifier’s check on DAG ensures every verifier BPF program will always

terminate.

2. Instruction limits, Stack and nesting limits

3

Termination as a guarantee
1. Verifier’s check on DAG ensures every verifier BPF program will always

terminate.

2. Instruction limits, Stack and nesting limits

Therefore, a verified BPF program will always terminate in an insignificant
time.

4

Termination as a guarantee
1. Verifier’s check on DAG ensures every verifier BPF program will always

terminate.

2. Instruction limits, Stack and nesting limits

Therefore, a verified BPF program will always terminate in an *insignificant*
time.

5

But some helpers are weakening this guarantee
● bpf_for_each_map_elem

○ Iterates through each element in map and calls a callback function

● bpf_loop
○ Bounded loop on a callback function

● bpf_user_ringbuf_drain
○ Invoke a callback for each sample in a user ring buffer.

● bpf_find_vma
○ maps an address of a task to the vma (vm_area_struct) for this address, and feed the vma

to a callback BPF function.

6

main():
bpf_loop(1000, func)

func():
bpf_loop(100,000, simple)

simple():
bpf_printk(“Hello World”)

Runtime ~2 mins

7

An example long running program

Guaranteed Termination ≠ Fast Termination

We need a Runtime Mechanism !

8

Dynamic Termination

9

When do we need Dynamic Termination

Dynamic Termination

Long runtime

10

When do we need Dynamic Termination

Dynamic Termination

Long runtime

BPF-OrchestrationAbrupt Termination

11

When do we need Dynamic Termination

Unexpected runtime
state

Dynamic Termination

Long runtime

BPF-OrchestrationAbrupt Termination

12

When do we need Dynamic Termination

Dynamic Termination

Long runtime

BPF ExceptionsBPF-OrchestrationAbrupt Termination

13

When do we need Dynamic Termination

Stack Exhaustion

Unexpected runtime
state

14

4

Implicit approach :
Fast-Path termination

1

Why do we need Dynamic
Termination for BPF?

3

Explicit approach

5

Takeaways

ROADMAP

2

Just kill it?

15

Kernel
Thread

Generic
Kernel
Thread

Generic
Kernel
Thread

Just kill it?
Aborting can lead to
memory leaks/deadlocks

16

Generic
Kernel
Thread

Aborting can lead to
memory leaks/deadlocks

BPF

Verifier bookkeeping :
live resources known
at any point

Just kill it?

17

Generic
Kernel
Thread

BPF

Helper calls takes back
to uncharted territory

Verifier bookkeeping :
live resources known
at any point

Just kill it?
Aborting can lead to
memory leaks/deadlocks

18

Generic
Kernel
Thread

BPF

Helper calls takes back
to uncharted territory

Q1. How to track lifetimes for cleanup
during termination(unwinding)?

Verifier bookkeeping :
live resources known
at any point

Just kill it?
Aborting can lead to
memory leaks/deadlocks

19

Generic
Kernel
Thread

BPF

Helper calls takes back
to uncharted territory

Q2. When to trigger unwind ?
Verifier bookkeeping :
live resources known
at any point

Just kill it?
Aborting can lead to
memory leaks/deadlocks

Q1. How to track lifetimes for cleanup
during termination(unwinding)?

20

4

Implicit approach :
Fast-Path termination

1

Why do we need Dynamic
Termination for BPF?

3 5

Takeaways

2

Just kill it?

ROADMAP

Explicit approach

Explicit lifetime-tracking : Garbage collection

21

● Maintain a list of live objects - alloc list

● For termination, iterate and free when safe

– Incurs costs even for no-termination

– Does not utilize verifier’s bookkeeping information !

Taking advantage of verifier : Unwind Table

22

● C++ style unwinding : pre-generate landing pads.

● Industry standard for dealing with cleanups

+ Zero cost for no-termination.

Triggering Unwind : Safe termination points

23

● For explicit lifetime management, cannot terminate when inside a
helper call (helper resources are untracked)

● Any point in BPF text is safe

● Approaches :

1. Flag check : Runtime Overhead

2. Kprobes : Zero-cost for no-termination

24

Termination Approach Tracking Lifetime Triggering Unwind

Explicit GC/Unwind Table Safe Termination Points

Table : Dynamic Termination

Shortcomings of Explicit resource management
Garbage Collection

● Runtime overhead for no-termination

25

Unwind Table

● Complexity : Sync unwind table with
BPF→x86 translation.

○ Inlining

○ Dead-Code elimination

○ JIT optimizations

● Correctness problem unless table verified.

● Weakens memory safety guarantee.

26

4

Implicit approach :
Fast-Path termination

1

Why do we need Dynamic
Termination for BPF?

5

Takeaways

2

Just kill it?

ROADMAP

3

Explicit approach

1. C has no lifetime management.

Revisiting the BPF advantage

27

⇐ Garbage Collection approach

1. C has no lifetime management.

2. BPF verifier introduces/manages lifetime of objects.

Revisiting the BPF advantage

28

⇐ Garbage Collection approach

⇐ Landing Pad approach

1. C has no lifetime management.

2. BPF verifier introduces/manages lifetime of objects.

3. Additionally, the verifier also restricts control flow
ㄴ No infinite loops through back-edges

Revisiting the BPF advantage

29

⇐ Garbage Collection approach

⇐ Landing Pad approach

⇐ Can we leverage this?

1. C has no lifetime management.

2. BPF verifier introduces/manages lifetime of objects.

3. Additionally, the verifier also restricts control flow
ㄴ No infinite loops through back-edges

Revisiting the BPF advantage

30

⇐ Garbage Collection approach

⇐ Landing Pad approach

⇐ Can we leverage this?

Implicit Lifetime Management
● Verified BPF program’s control flow encodes cleanup

● Accelerated execution to terminate after releasing any live resources

31

Fast-Path

Fast-Path Termination

32

Dynamically patching target BPF program with a faster version.

Fast-Path Termination

33

Dynamically patching target BPF program with a faster version.

● Patch all helper calls to create a fall-through.

● Keep helpers which free resources to release objects allocated before termination
request.

Fast-Path Termination

34

Dynamically patching target BPF program with a faster version.

● Patch all helper calls to create a fall-through. (Leverage verifier’s control flow restrictions)

● Keep helpers which free resources to release objects allocated before termination
request. (Leverage verifier’s lifecycle management)

bpf_alloc_1()

bpf_free_1()

bpf_alloc_2()

bpf_free_2()

bpf_loop()

bpf_alloc_1()

bpf_free_1()

bpf_alloc_2()

bpf_free_2()

bpf_loop()

Kill Signal

bpf_alloc_1()

bpf_free_1()

bpf_alloc_2()

bpf_free_2()

bpf_loop()

Kill Signal

● Stripped BPF program only has simple
BPF insns to execute

bpf_alloc_1()

bpf_free_1()

bpf_alloc_2()

bpf_free_2()

bpf_loop()

Kill Signal

● Stripped BPF program only has simple
BPF insns to execute

● Patched program takes nearest exit
routes => Fast fallthrough

bpf_alloc_1()

bpf_free_1()

bpf_free_2()

bpf_loop()

if (NULL==(res=bpf_alloc_2()))
goto out;

Kill Signal

● Stripped BPF program only has simple
BPF insns to execute

● Patched program takes nearest exit
routes => Fast fallthrough

● Pre-termination objects will always be
released <= Implicit Lifetime Management

bpf_alloc_1()

bpf_free_1()

bpf_free_2()

bpf_loop()

if (NULL==(res=bpf_alloc_2()))
goto out;

Kill Signal

● Stripped BPF program only has simple
BPF insns to execute

● Patched program takes nearest exit
routes => Fast fallthrough

● Pre-termination objects will always be
released <= Implicit Lifetime Management

bpf_alloc_1()

bpf_free_1()

bpf_free_2()

bpf_loop()

if (NULL==(res=bpf_alloc_2()))
goto out;

Assumption : Helpers returning a resource always has a
failure case checked by the programmer.

Triggering Unwind : Atomic Program Patch

42

● Patching at runtime demands instruction-level atomicity.

● Halt execution → Apply patch → Resume

● Approaches : Mechanisms used for Safe-Termination Points (flag, kprobes)

Fall-through for long running helpers

43

● bpf_for_each_map_elem
○ Iterates through each element in map and calls a callback function

● bpf_loop
○ Bounded loop on a callback function

● bpf_user_ringbuf_drain
○ Invoke a callback for each sample in a user ring buffer.

● bpf_find_vma
○ maps an address of a task to the vma (vm_area_struct) for this address, and feed the vma

to a callback BPF function.

bpf_loop ()

Fall-through for long running helpers

44

● bpf_for_each_map_elem
○ Iterates through each element in map and calls a callback function

● bpf_loop
○ Bounded loop on a callback function

● bpf_user_ringbuf_drain
○ Invoke a callback for each sample in a user ring buffer.

● bpf_find_vma
○ maps an address of a task to the vma (vm_area_struct) for this address, and feed the vma

to a callback BPF function.

bpf_loop ()

Fast-Path for long running helpers

45

bpf_for_each_map_elem
bpf_loop
bpf_user_ringbuf_drain

static int logger(void *ctx)
{
 bpf_printk(ctx->data);
 return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
 bpf_for_each_map_elem
 (logger, map);
}

BPF_CALL(bpf_for_each_map_elem,
 callback_fn, …)

{
 for_each(elem: map)
 {

ret = callback_fn(elem);
if (ret)

return 1;
 }
 return 0;
}

BPF program decides whether to continue execution

Fast-Path for long running helpers

46

static int logger(void *ctx)
{
 bpf_printk(ctx->data);
 return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
 bpf_for_each_map_elem
 (logger, map);
}

BPF_CALL(bpf_for_each_map_elem,
 callback_fn, …)

{
 for_each(elem: map)
 {

ret = callback_fn(elem);
if (ret)

return 1;
 }
 return 0;
}

BPF program decides whether to continue execution
bpf_for_each_map_elem
bpf_loop
bpf_user_ringbuf_drain

Fast-Path for long running helpers

47

static int logger(void *ctx)
{
 bpf_printk(ctx->data);
 return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
 bpf_for_each_map_elem
 (logger, map);
}

BPF_CALL(bpf_for_each_map_elem,
 callback_fn, …)

{
 for_each(elem: map)
 {

ret = callback_fn(elem);
if (ret)

return 1;
 }
 return 0;
}

BPF program decides whether to continue execution
bpf_for_each_map_elem
bpf_loop
bpf_user_ringbuf_drain

Fast-Path for long running helpers

48

static int logger(void *ctx)
{
 bpf_printk(ctx->data);
 return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
 bpf_for_each_map_elem
 (logger, map);
}

BPF_CALL(bpf_for_each_map_elem,
 callback_fn, …)

{
 for_each(elem: map)
 {

ret = callback_fn(elem);
if (ret)

return 1;
 }
 return 0;
}

xN

BPF program decides whether to continue execution
bpf_for_each_map_elem
bpf_loop
bpf_user_ringbuf_drain

Fast-Path for long running helpers

49

static int logger(void *ctx)
{
 bpf_printk(ctx->data);
 return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
 bpf_for_each_map_elem
 (logger, map);
}

BPF_CALL(bpf_for_each_map_elem,
 callback_fn, …)

{
 for_each(elem: map)
 {

ret = callback_fn(elem);
if (ret)

return 1;
 }
 return 0;
}

return 1;

BPF program decides whether to continue execution
bpf_for_each_map_elem
bpf_loop
bpf_user_ringbuf_drain

Fast-Path for long running helpers

50

bpf_find_vma

static int logger(void *ctx)
{
 bpf_printk(ctx->data);
 return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
 bpf_find_vma(logger, task);
}

BPF_CALL(bpf_find_vma, callback_fn, …)
{
 mmap_try_lock(mm);
 vma = find_vma(mm);
 if (vma)

ret = callback_fn(vma);
 mmap_unlock(mm);
 return ret;
}

Just a long running helper; BPF program cannot request to
prematurely exit.

Fast-Path for long running helpers

51

bpf_find_vma

static int logger(void *ctx)
{
 bpf_printk(ctx->data);
 return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
 bpf_find_vma(logger, task);
}

BPF_CALL(bpf_find_vma, callback_fn, …)
{
 mmap_try_lock(mm);
 vma = find_vma(mm);
 if (vma)

ret = callback_fn(vma);
 mmap_unlock(mm);
 return ret;
}

Just a long running helper; BPF program cannot request to
prematurely exit.

Time
consuming
function is
kernel code.

Fast-Path for long running helpers

52

static int logger(void *ctx)
{
 bpf_printk(ctx->data);
 return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
 bpf_find_vma(logger, task);
}

BPF_CALL(bpf_find_vma, callback_fn, …)
{
 mmap_try_lock(mm);
 vma = find_vma(mm);
 if (vma)

ret = callback_fn(vma);
 mmap_unlock(mm);
 return ret;
}

Callback_fn is
only called
once at the
end.

x1

Just a long running helper; BPF program cannot request to
prematurely exit. bpf_find_vma

Fast-Path for long running helpers

53

static int logger(void *ctx)
{
 bpf_printk(ctx->data);
 return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
 bpf_find_vma(logger, task);
}

BPF_CALL(bpf_find_vma, callback_fn, …)
{
 mmap_try_lock(mm);
 vma = find_vma(mm);
 if (vma)

ret = callback_fn(vma);
 mmap_unlock(mm);
 return ret;
}

Callback_fn is
only called
once at the
end.

x1

Safe termination not possible if kernel code
is cause of delay!

Just a long running helper; BPF program cannot request to
prematurely exit. bpf_find_vma

Making BPF termination compliant
Critical helpers/kfuncs must have error codes which a programmer has to check before proceeding.

{bpf_spin_lock, bpf_refcount_acquire} currently does not comply !

54

SEC(“tc”)
int bpf_prog(void *ctx)
{
 // obtain lock
 bpf_spin_lock(lock);
 // Critical Section
 bpf_spin_unlock(lock);
}

Verifier assumes a spin_lock will always succeed.

SEC(“tc”)
int bpf_prog(void *ctx)
{
 // obtain lock
 ret = bpf_spin_lock(lock);
 if (!ret)
 {
 // Critical Section
 bpf_spin_unlock(lock);
 }
}

Proposed change will ensure a program does not enter
CS when lock returns prematurely on termination

Advantages :

55

● No need to have a new program (landing pads) for cleanups.
○ Allocated resources will auto-cleanup from unpatched free-up helper calls.

● Complexity of managing resources as per JIT/Verifier optimization of BPF insns is removed.

● Memory safety property cannot be compromised.

Advantages :

56

Limitations
● The error check from API changes puts more burden on a BPF programmer.

● Termination is not immediate as non-helpers are still executed.

● Kptrs, acquired before termination, can still get modified.
However, programmed checks can safeguard against termination-time unexpected modifications.

● No need to have a new program (landing pads) for cleanups.
○ Allocated resources will auto-cleanup from unpatched free-up helper calls.

● Complexity of managing resources as per JIT/Verifier optimization of BPF insns is removed.

● Memory safety property cannot be compromised.

57

Termination Approach Tracking Lifetime Triggering Unwind

Explicit GC/Unwind Table Safe Termination Points

Implicit Fast-Path Atomic Program Patch

Table : Dynamic Termination

58

1

Why do we need Dynamic
Termination for BPF?

5

Takeaways

2

Just kill it?

ROADMAP

Explicit approach

3

4

Implicit approach :
Fast-Path termination

Takeaways : Fast-Path Termination
1. Leverages encoded cleanup & control-flow restrictions.

2. Patch BPF program to accelerate execution.

3. Long running helpers switching between BPF-kernel support early exit through return values.

59

Summary
1. BPF termination is a two-part problem :

i. How to track live objects ?
ii. How/When to trigger unwind ?

2. Explicit management had its shortcomings : complexity, overheads, etc.

3. Proposed Fast-Path termination.

4. Call for making all helpers/kfuncs termination complaint.

60

Questions ?

61

Thank You

62

63

Backup Slides

Dealing with Loop inlining
Based on certain conditions (non-constant callback_fn, non-zero flag, etc) a bpf_loop can
be inlined.

64

Dealing with Loop inlining
Based on certain conditions (non-constant callback_fn, non-zero flag, etc) a bpf_loop can
be inlined.

65

bpf_loop(10, foo, NULL, 0); ⇒ for (int i = 0; i < 10; ++i)
 foo(i, NULL);

Dealing with Loop inlining

66

 for (int i = 0; i < 10; ++i)
 foo(i, NULL);

/* if reg_loop_cnt >= reg_loop_max skip the loop body */
BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),

/* callback call*/
BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
BPF_CALL_REL(0),

/* increment loop counter */
BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),

/* jump to loop header if callback returned 0 */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),

Based on certain conditions (non-constant callback_fn, non-zero flag, etc) a bpf_loop can
be inlined.

Dealing with Loop inlining

67

 for (int i = 0; i < 10; ++i)
 foo(i, NULL);

/* if reg_loop_cnt >= reg_loop_max skip the loop body */
BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),

/* callback call*/
BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
BPF_CALL_REL(0),

/* increment loop counter */
BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),

/* jump to loop header if callback returned 0 */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),

patch with nops to fall-through

Based on certain conditions (non-constant callback_fn, non-zero flag, etc) a bpf_loop can
be inlined.

Insights
● Verifier range analysis ensured any branch decision based on runtime values i.e. helper

returns, map values, etc cannot corrupt kernel state or hurt safety.
○ Patching helpers to return error values will still take the program to one of the possible branches which the

verifier has already marked as safe to execute.

● Stripping-off all helpers will drastically reduce runtime of the BPF program
○ Long running helpers, or helpers in generate cost more than simple BPF insns
○ Currently low Instruction and complexity limit of BPF means an insignificant time to completion for a

program with no helpers.

● Modified program will be same structurally. (Replacing helper calls with dummies won’t
bring any new JIT/Verifier optimization)

● Even if the patched BPF program can write unexpected to a kernel object, the values still
would be within an acceptable range from a verified program.

○ Always doing what the verified said is logically okay. Hence the kernel is still safe.

68

69

Locating in Design axes :

● Runtime Overhead : O(Helpers) ≈ 15 ns * #helpers

● Termination Behaviour
○ Quick/Delayed
○ Memory Requirement

● Programming Cost

Helpers Best(ns) Avg (ns)

bpf_spin_lock/unlock 18 20

bpf_current_task_under_cgroup 10 40

bpf_get_current_pid_tgid 56 60

bpf_get_smp_processor_id 55 60

bpf_get_current_task 38 60

bpf_tcp_sock 57 62

bpf_sock_hash_update 55 62

bpf_get_numa_node_id 55 65

bpf_perf_event_read 10 65

bpf_setsockopt 63 70

bpf_sock_map_update 62 70

bpf_get_socket_cookie 57 70

bpf_sock_ops_cb_flags_set 57 70

Raj Sahu and Dan Williams. 2023. Enabling BPF Runtime policies for
better BPF management. In Proceedings of the 1st Workshop on
eBPF and Kernel Extensions (eBPF '23)

70

Garbage Collection

Locating in Design axes :

● Runtime Overhead : O(allocations) ≈ 30-110 ns * #allocation

○ Memory : O(allocations) ≈ 30B * #allocation

● Termination Behaviour
○ Memory Requirement : None

● Programming Cost : Low Complexity, Moderate Code Spread

Design Goals
CRITICAL

● Safety : Correctly release all acquired resources

IMPORTANT

● Runtime Overhead : Cost paid for no-termination case
● Termination Behaviour : Quick/delayed; Memory Requirement
● Programming Cost : Kernel Complexity, code spread, Baggage on future

 modifications

71

Integrating with Use-Cases
1. Abrupt Termination => sys_bpf() or Timers

2. BPF-Orchestration => sys_bpf()

3. BPF Exceptions and Aborts => Called by bpf_throw

4. Stack Exhaustion => Called by kernel

72

Until Now

Naive Solution

● Runtime Overhead : HIGH
● Termination Behaviour :

○ Quick/delayed : Quick
○ Memory Requirement :

Zero
● Programming Cost : HIGH

Kprobe Optimization

● Runtime Overhead : MODERATE
● Termination Behaviour :

○ Quick/delayed : Quick
○ Memory Requirement :

HIGH
● Programming Cost : MODERATE

Cleanup (Unwind Table)

● Runtime Overhead : Zero
● Termination Behaviour :

○ Quick/delayed : Quick
○ Memory Requirement :

Zero
● Programming Cost : HIGH

73

74

Dynamic Termination

Explicit lifetime
management

Triggering Unwind

Tracking Lifetime

Safe Termination Point

(explicit)

(GC/Unwind Table)

Implicit lifetime
management

 (Fast-path)

Atomic Program Patch
(implicit)

