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What makes BPF so cool
BPF : Safe kernel extensions

Verifier guarantees :

ㄴ Memory Safety : 
No {Use-after-Free, Null dereference, Resource leaks} 

ㄴ Guaranteed Termination : No {Infinite Loops}

Untrusted code cannot crash (Memory Safety) or stall (Guaranteed Termination) kernel. 
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Termination as a guarantee
1. Verifier’s check on DAG ensures every verifier BPF program will always 

terminate. 

2. Instruction limits, Stack and nesting limits
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Termination as a guarantee
1. Verifier’s check on DAG ensures every verifier BPF program will always 

terminate. 

2. Instruction limits, Stack and nesting limits 

Therefore, a verified BPF program will always terminate in an insignificant 
time. 
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Termination as a guarantee
1. Verifier’s check on DAG ensures every verifier BPF program will always 

terminate. 

2. Instruction limits, Stack and nesting limits 

Therefore, a verified BPF program will always terminate in an *insignificant* 
time. 
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But some helpers are weakening this guarantee
● bpf_for_each_map_elem

○ Iterates through each element in map and calls a callback function

● bpf_loop
○ Bounded loop on a callback function 

● bpf_user_ringbuf_drain 
○ Invoke a callback for each sample in a user ring buffer. 

● bpf_find_vma 
○ maps an address of a task to the vma (vm_area_struct) for this address, and feed the vma 

to a callback BPF function.
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main():
bpf_loop(1000, func)

func():
bpf_loop(100,000, simple)

simple():
bpf_printk(“Hello World”)

Runtime    ~2 mins
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An example long running program



Guaranteed Termination ≠ Fast Termination 

We need a Runtime Mechanism !
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Dynamic Termination
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When do we need Dynamic Termination



Dynamic Termination

Long runtime
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Dynamic Termination

Long runtime

BPF ExceptionsBPF-OrchestrationAbrupt Termination

13

When do we need Dynamic Termination

Stack Exhaustion

Unexpected runtime 
state 
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4

Implicit approach : 
Fast-Path termination

1

Why do we need Dynamic 
Termination for BPF?
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Explicit approach
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Just kill it?
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Generic 
Kernel 
Thread

BPF

Helper calls takes back 
to uncharted territory

Q1. How to track lifetimes for cleanup 
during termination(unwinding)?

Verifier bookkeeping :  
live resources known 
at any point

Just kill it?
Aborting can lead to 
memory leaks/deadlocks
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Generic 
Kernel 
Thread

BPF

Helper calls takes back 
to uncharted territory

Q2. When to trigger unwind ?  
Verifier bookkeeping :  
live resources known 
at any point

Just kill it?
Aborting can lead to 
memory leaks/deadlocks

Q1. How to track lifetimes for cleanup 
during termination(unwinding)?
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Explicit lifetime-tracking : Garbage collection
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● Maintain a list of live objects - alloc list

● For termination, iterate and free when safe

– Incurs costs even for no-termination

– Does not utilize verifier’s bookkeeping information !



Taking advantage of verifier : Unwind Table 
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● C++ style unwinding : pre-generate landing pads.

● Industry standard for dealing with cleanups

+ Zero cost for no-termination. 
  



Triggering Unwind : Safe termination points 
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● For explicit lifetime management, cannot terminate when inside a 
helper call (helper resources are untracked)

● Any point in BPF text is safe

● Approaches :

1. Flag check : Runtime Overhead

2. Kprobes : Zero-cost for no-termination
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Termination Approach Tracking Lifetime Triggering Unwind

Explicit GC/Unwind Table Safe Termination Points

Table : Dynamic Termination



Shortcomings of Explicit resource management
Garbage Collection 

● Runtime overhead for no-termination 
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Unwind Table 

● Complexity : Sync unwind table with 
BPF→x86 translation.

○ Inlining

○ Dead-Code elimination 

○ JIT optimizations

● Correctness problem unless table verified. 

● Weakens memory safety guarantee. 
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1. C has no lifetime management. 

Revisiting the BPF advantage 
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⇐ Garbage Collection approach



1. C has no lifetime management. 

2. BPF verifier introduces/manages lifetime of objects.

Revisiting the BPF advantage 
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⇐ Garbage Collection approach

⇐ Landing Pad approach



1. C has no lifetime management. 

2. BPF verifier introduces/manages lifetime of objects.

3. Additionally, the verifier also restricts control flow
ㄴ No infinite loops through back-edges 

Revisiting the BPF advantage 
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⇐ Garbage Collection approach

⇐ Landing Pad approach

⇐ Can we leverage this?



1. C has no lifetime management. 

2. BPF verifier introduces/manages lifetime of objects.

3. Additionally, the verifier also restricts control flow
ㄴ No infinite loops through back-edges 

Revisiting the BPF advantage 

30

⇐ Garbage Collection approach

⇐ Landing Pad approach

⇐ Can we leverage this?



Implicit Lifetime Management
● Verified BPF program’s control flow encodes cleanup 

● Accelerated execution to terminate after releasing any live resources
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Fast-Path



Fast-Path Termination
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Dynamically patching target BPF program with a faster version. 



Fast-Path Termination
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Dynamically patching target BPF program with a faster version. 

● Patch all helper calls to create a fall-through. 

● Keep helpers which free resources to release objects allocated before termination 
request.  



Fast-Path Termination
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Dynamically patching target BPF program with a faster version. 

● Patch all helper calls to create a fall-through.     (Leverage verifier’s control flow restrictions)

● Keep helpers which free resources to release objects allocated before termination 
request.   (Leverage verifier’s lifecycle management)
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● Stripped BPF program only has simple 
BPF insns to execute
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Kill Signal

● Stripped BPF program only has simple 
BPF insns to execute

● Patched program takes nearest exit 
routes => Fast fallthrough

bpf_alloc_1()

bpf_free_1()

bpf_free_2()

bpf_loop()

if (NULL==(res=bpf_alloc_2()))
goto out;
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Kill Signal

● Stripped BPF program only has simple 
BPF insns to execute

● Patched program takes nearest exit 
routes => Fast fallthrough

● Pre-termination objects will always be 
released <= Implicit Lifetime Management

bpf_alloc_1()

bpf_free_1()

bpf_free_2()

bpf_loop()

if (NULL==(res=bpf_alloc_2()))
goto out;

Assumption : Helpers returning a resource always has a 
failure case checked by the programmer.



Triggering Unwind : Atomic Program Patch
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● Patching at runtime demands instruction-level atomicity. 

● Halt execution → Apply patch → Resume 

● Approaches : Mechanisms used for Safe-Termination Points (flag, kprobes)



Fall-through for long running helpers

43

● bpf_for_each_map_elem
○ Iterates through each element in map and calls a callback function

● bpf_loop
○ Bounded loop on a callback function 

● bpf_user_ringbuf_drain 
○ Invoke a callback for each sample in a user ring buffer. 

● bpf_find_vma 
○ maps an address of a task to the vma (vm_area_struct) for this address, and feed the vma 

to a callback BPF function.

bpf_loop ()



Fall-through for long running helpers
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● bpf_for_each_map_elem
○ Iterates through each element in map and calls a callback function

● bpf_loop
○ Bounded loop on a callback function 

● bpf_user_ringbuf_drain 
○ Invoke a callback for each sample in a user ring buffer. 

● bpf_find_vma 
○ maps an address of a task to the vma (vm_area_struct) for this address, and feed the vma 

to a callback BPF function.

bpf_loop ()



Fast-Path for long running helpers
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bpf_for_each_map_elem 
bpf_loop
bpf_user_ringbuf_drain 

static int logger(void *ctx)
{
      bpf_printk(ctx->data);
      return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
    bpf_for_each_map_elem
    (logger, map);
}

BPF_CALL(bpf_for_each_map_elem, 
         callback_fn, …)

{
    for_each(elem: map)
    {

ret = callback_fn(elem);
if (ret)

return 1;
    }
    return 0;
}

BPF program decides whether to continue execution 



Fast-Path for long running helpers
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static int logger(void *ctx)
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static int logger(void *ctx)
{
      bpf_printk(ctx->data);
      return 0;
}
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Fast-Path for long running helpers
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static int logger(void *ctx)
{
      bpf_printk(ctx->data);
      return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
    bpf_for_each_map_elem
    (logger, map);
}

BPF_CALL(bpf_for_each_map_elem, 
         callback_fn, …)

{
    for_each(elem: map)
    {

ret = callback_fn(elem);
if (ret)

return 1;
    }
    return 0;
}

xN

BPF program decides whether to continue execution 
bpf_for_each_map_elem 
bpf_loop
bpf_user_ringbuf_drain 



Fast-Path for long running helpers
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static int logger(void *ctx)
{
      bpf_printk(ctx->data);
      return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
    bpf_for_each_map_elem
    (logger, map);
}

BPF_CALL(bpf_for_each_map_elem, 
         callback_fn, …)

{
    for_each(elem: map)
    {

ret = callback_fn(elem);
if (ret)

return 1;
    }
    return 0;
}

return 1;

BPF program decides whether to continue execution 
bpf_for_each_map_elem 
bpf_loop
bpf_user_ringbuf_drain 



Fast-Path for long running helpers
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bpf_find_vma

static int logger(void *ctx)
{
      bpf_printk(ctx->data);
      return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
    bpf_find_vma(logger, task);
}

BPF_CALL(bpf_find_vma, callback_fn, …)
{
    mmap_try_lock(mm); 
    vma = find_vma(mm);
    if (vma)

ret = callback_fn(vma);
    mmap_unlock(mm);
    return ret;
}

Just a long running helper; BPF program cannot request to 
prematurely exit.  



Fast-Path for long running helpers
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bpf_find_vma

static int logger(void *ctx)
{
      bpf_printk(ctx->data);
      return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
    bpf_find_vma(logger, task);
}

BPF_CALL(bpf_find_vma, callback_fn, …)
{
    mmap_try_lock(mm); 
    vma = find_vma(mm);
    if (vma)

ret = callback_fn(vma);
    mmap_unlock(mm);
    return ret;
}

Just a long running helper; BPF program cannot request to 
prematurely exit.  

Time 
consuming 
function is 
kernel code. 



Fast-Path for long running helpers
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static int logger(void *ctx)
{
      bpf_printk(ctx->data);
      return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
    bpf_find_vma(logger, task);
}

BPF_CALL(bpf_find_vma, callback_fn, …)
{
    mmap_try_lock(mm); 
    vma = find_vma(mm);
    if (vma)

ret = callback_fn(vma);
    mmap_unlock(mm);
    return ret;
}

Callback_fn is 
only called 
once at the 
end.

x1

Just a long running helper; BPF program cannot request to 
prematurely exit.  bpf_find_vma



Fast-Path for long running helpers
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static int logger(void *ctx)
{
      bpf_printk(ctx->data);
      return 0;
}

SEC(“tracepoints”)
int bpf_prog(void *ctx)
{
    bpf_find_vma(logger, task);
}

BPF_CALL(bpf_find_vma, callback_fn, …)
{
    mmap_try_lock(mm); 
    vma = find_vma(mm);
    if (vma)

ret = callback_fn(vma);
    mmap_unlock(mm);
    return ret;
}

Callback_fn is 
only called 
once at the 
end.

x1

Safe termination not possible if kernel code 
is cause of delay!

Just a long running helper; BPF program cannot request to 
prematurely exit.  bpf_find_vma



Making BPF termination compliant
Critical helpers/kfuncs must have error codes which a programmer has to check before proceeding. 

{bpf_spin_lock, bpf_refcount_acquire} currently does not comply !  
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SEC(“tc”)
int bpf_prog(void *ctx)
{
    // obtain lock
    bpf_spin_lock(lock);
    // Critical Section 
    bpf_spin_unlock(lock);
}

Verifier assumes a spin_lock will always succeed. 

SEC(“tc”)
int bpf_prog(void *ctx)
{
    // obtain lock
    ret = bpf_spin_lock(lock);
    if (!ret)
    {
         // Critical Section 
         bpf_spin_unlock(lock);
    }
}

Proposed change will ensure a program does not enter 
CS when lock returns prematurely on termination 



Advantages : 
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● No need to have a new program (landing pads) for cleanups. 
○ Allocated resources will auto-cleanup from unpatched free-up helper calls. 

● Complexity of managing resources as per JIT/Verifier optimization of BPF insns is removed.

● Memory safety property cannot be compromised.   



Advantages : 
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Limitations
● The error check from API changes puts more burden on a BPF programmer. 

● Termination is not immediate as non-helpers are still executed. 

● Kptrs, acquired before termination, can still get modified. 
However, programmed checks can safeguard against termination-time unexpected modifications.  

● No need to have a new program (landing pads) for cleanups. 
○ Allocated resources will auto-cleanup from unpatched free-up helper calls. 

● Complexity of managing resources as per JIT/Verifier optimization of BPF insns is removed.

● Memory safety property cannot be compromised.   
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Termination Approach Tracking Lifetime Triggering Unwind

Explicit GC/Unwind Table Safe Termination Points

Implicit Fast-Path Atomic Program Patch

Table : Dynamic Termination
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1

Why do we need Dynamic 
Termination for BPF?

5

Takeaways

2

Just kill it?

ROADMAP

Explicit approach

3

4

Implicit approach : 
Fast-Path termination



Takeaways : Fast-Path Termination 
1. Leverages encoded cleanup & control-flow restrictions. 

2. Patch BPF program to accelerate execution. 

3. Long running helpers switching between BPF-kernel support early exit through return values. 
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Summary 
1. BPF termination is a two-part problem : 

i. How to track live objects ? 
ii. How/When to trigger unwind ? 

2. Explicit management had its shortcomings : complexity, overheads, etc. 

3. Proposed Fast-Path termination. 
 

4. Call for making all helpers/kfuncs termination complaint. 
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Questions ?

61



Thank You
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Backup Slides



Dealing with Loop inlining
Based on certain conditions (non-constant callback_fn, non-zero flag, etc) a bpf_loop can 
be inlined. 
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Dealing with Loop inlining
Based on certain conditions (non-constant callback_fn, non-zero flag, etc) a bpf_loop can 
be inlined. 
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bpf_loop(10, foo, NULL, 0);          ⇒        for (int i = 0; i < 10; ++i)
     foo(i, NULL);



Dealing with Loop inlining
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 for (int i = 0; i < 10; ++i)
 foo(i, NULL);

/* if reg_loop_cnt >= reg_loop_max skip the loop body */
BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),

/* callback call*/
BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
BPF_CALL_REL(0),

/* increment loop counter */
BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),

/* jump to loop header if callback returned 0 */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),

Based on certain conditions (non-constant callback_fn, non-zero flag, etc) a bpf_loop can 
be inlined. 



Dealing with Loop inlining
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 for (int i = 0; i < 10; ++i)
 foo(i, NULL);

/* if reg_loop_cnt >= reg_loop_max skip the loop body */
BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),

/* callback call*/
BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
BPF_CALL_REL(0),

/* increment loop counter */
BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),

/* jump to loop header if callback returned 0 */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),

patch with nops to fall-through

Based on certain conditions (non-constant callback_fn, non-zero flag, etc) a bpf_loop can 
be inlined. 



Insights 
● Verifier range analysis ensured any branch decision based on runtime values i.e. helper 

returns, map values, etc cannot corrupt kernel state or hurt safety. 
○ Patching helpers to return error values will still take the program to one of the possible branches which the 

verifier has already marked as safe to execute. 

● Stripping-off all helpers will drastically reduce runtime of the BPF program
○ Long running helpers, or helpers in generate cost more than simple BPF insns
○ Currently low Instruction and complexity limit of BPF means an insignificant time to completion for a 

program with no helpers.  

● Modified program will be same structurally. (Replacing helper calls with dummies won’t 
bring any new JIT/Verifier optimization)

● Even if the patched BPF program can write unexpected to a kernel object, the values still 
would be within an acceptable range from a verified program. 

○ Always doing what the verified said is logically okay. Hence the kernel is still safe.  
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Locating in Design axes : 

● Runtime Overhead : O(Helpers) ≈ 15 ns * #helpers

● Termination Behaviour
○ Quick/Delayed  
○ Memory Requirement 

● Programming Cost 

Helpers Best(ns) Avg (ns)

bpf_spin_lock/unlock 18 20

bpf_current_task_under_cgroup 10 40

bpf_get_current_pid_tgid 56 60

bpf_get_smp_processor_id 55 60

bpf_get_current_task 38 60

bpf_tcp_sock 57 62

bpf_sock_hash_update 55 62

bpf_get_numa_node_id 55 65

bpf_perf_event_read 10 65

bpf_setsockopt 63 70

bpf_sock_map_update 62 70

bpf_get_socket_cookie 57 70

bpf_sock_ops_cb_flags_set 57 70

Raj Sahu and Dan Williams. 2023. Enabling BPF Runtime policies for 
better BPF management. In Proceedings of the 1st Workshop on 
eBPF and Kernel Extensions (eBPF '23)
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Garbage Collection

Locating in Design axes : 

● Runtime Overhead : O(allocations) ≈ 30-110 ns * #allocation

○ Memory : O(allocations) ≈ 30B * #allocation 

● Termination Behaviour 
○ Memory Requirement : None

● Programming Cost : Low Complexity, Moderate Code Spread



Design Goals
CRITICAL 

● Safety : Correctly release all acquired resources 

IMPORTANT

● Runtime Overhead : Cost paid for no-termination case 
● Termination Behaviour : Quick/delayed; Memory Requirement
● Programming Cost : Kernel Complexity, code spread, Baggage on future 

    modifications
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Integrating with Use-Cases
1. Abrupt Termination => sys_bpf() or Timers

2. BPF-Orchestration => sys_bpf()

3. BPF Exceptions and Aborts => Called by bpf_throw 
 

4. Stack Exhaustion => Called by kernel
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Until Now 

Naive Solution

● Runtime Overhead : HIGH
● Termination Behaviour : 

○ Quick/delayed : Quick 
○ Memory Requirement : 

Zero
● Programming Cost : HIGH

Kprobe Optimization

● Runtime Overhead : MODERATE
● Termination Behaviour : 

○ Quick/delayed : Quick 
○ Memory Requirement : 

HIGH
● Programming Cost : MODERATE

Cleanup (Unwind Table)

● Runtime Overhead : Zero
● Termination Behaviour : 

○ Quick/delayed : Quick 
○ Memory Requirement : 

Zero
● Programming Cost : HIGH
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Dynamic Termination

Explicit lifetime 
management 

Triggering Unwind

Tracking Lifetime

Safe Termination Point

(explicit)

(GC/Unwind Table)

Implicit lifetime 
management

       (Fast-path)

Atomic Program Patch
(implicit)


