
BPF Static Keys

Linux Plumbers 2023
Anton Protopopov

https://www.linkedin.com/in/aspsk/
https://github.com/aspsk


Static Keys in the Linux Kernel

● The Linux Kernel Static Keys API was added in 2009

● It is based on the `asm goto` feature provided by a compiler 

(which lets to jump to labels defined in C from inline assembly)

● + An ability to live-patch Linux Kernel code

● “Static keys allows the inclusion of seldom used features in 

performance-sensitive fast-path kernel code”

● This talk shows how to add this functionality to BPF

https://docs.kernel.org/staging/static-keys.html
https://gcc.gnu.org/legacy-ml/gcc-patches/2009-07/msg01556.html


Static Keys in the Linux Kernel: example



Static Keys in the Linux Kernel
This key is off by default. The “static” 
part comes from the fact that we can’t 
create new keys dynamically—only to 

compile them



Static Keys in the Linux Kernel

This is unlikely that it will be 
turned on. When disabled the 
check costs nothing

This key is off by default. The “static” 
part comes from the fact that we can’t 
create new keys dynamically—only to 

compile them



Static Keys in the Linux Kernel



Static Keys in the Linux Kernel

The static key is off => the 
jump is replaced by a NOP. 



Static Keys in the Linux Kernel

If we turn it on, then the NOP 
is replaced by a jump



Static Keys in the Linux Kernel

If we turn it on, then the NOP 
is replaced by a jump



Goal: we want to do the same in BPF



Static Keys in BPF: branch is unlikely, key is off



Static Keys in BPF: branch is unlikely, key is on



Second option: we want to prioritize the branch



Second option: we want to prioritize the branch

likely



Static Keys in BPF: branch is likely, key is off

 



Static Keys in BPF: branch is likely, key is on



Static Keys in BPF: building blocks

In order to have BPF Static Keys we need two items:

● We want to compile bpf_static_branch_{likely/unlikely} 

into code blocks shown above

● We want to be able to toggle branches in a live BPF program:

○ Normal branches: jmp/nop when key is on/off
○ Inverse branches: nop/jmp when key is on/off



Static Keys in BPF: building blocks

In order to have BPF Static Keys we need two items:

● We want to compile bpf_static_branch_{likely/unlikely} 

into code blocks shown above

● We want to be able to toggle branches in a live BPF program:

○ Normal branches: jmp/nop when key is on/off
○ Inverse branches: nop/jmp when key is on/off

● Solution: use `asm goto` + extend BPF API



ASM goto: branch is unlikely (x86_64)



ASM goto: branch is unlikely (x86_64)



ASM goto: branch is unlikely (x86_64)



ASM goto: branch is unlikely (x86_64)

.rel.jump_table



BPF Static Key: just a map



Static Keys in BPF: API

● In order to use static keys a program should be loaded with an 

array of “static branches”, where each static branch is of the 

following form



Static Keys in BPF: API

● On BPF_PROG_LOAD we pass an array of 

bpf_static_branch_info structs via attrs:



Static Keys in BPF: API

● On BPF_PROG_LOAD we pass an array of 

bpf_static_branch_info structs via attrs: Libbpf will do all the work 
when proper “.jump_table” 
and ”.rel.jump_table” tables 
are present



Static Keys in BPF: API

● To toggle branches on/off we just update the map value via the 

bpf(BPF_MAP_UPDATE_ELEM) syscall



Static Keys in BPF: API

Static Key X

static_branches

X offset_1

Y …
X offset_2

Z …

Program

…

target_1

target_2

…

…

offset_1:

offset_2:

goto target_1

nop

syscall(BPF_MAP_UPDATE, X, 1)

0

BPF_F_INVERSE_BRANCH

…

…

key offset target flags



Static Keys in BPF: API

Static Key X

static_branches

X offset_1

Y …
X offset_2

Z …

Program

…

target_1

target_2

…

…

offset_1:

offset_2:

nop

goto target_2

syscall(BPF_MAP_UPDATE, X, 0)

0

BPF_F_INVERSE_BRANCH

…

…

key offset target flags



Static Keys in BPF: API

● We also need to prevent BPF programs from accessing the 

static keys directly. The solution I chose was to reject programs 

trying to use static keys as normal maps

● There is BPF_F_READONLY_PROG, but it provides different 

semantics: bpf_map_is_rdonly = READONLY && frozen. Map 

values treated like constants in verifier. This is not what I 

needed



Static Keys in BPF: life of static branch

BPF_PROG_LOAD

attrs->bpf_static_branch_info[]

map_fd flags offsets

… … …

map_fd flags offsets

prog->aux->static_branches[]

map_ptr* flags insns

… … …

map_ptr* flags insns

env->used_maps[]

map_ptr*

…

map_ptr*

prog->aux->used_maps[]

map_ptr*

…

map_ptr*

bpf_check()

call 0x76
goto +0
r0 = 0
exit
…

… 18000000beef1011
00000000ffffffff
r0 = *(u64 *)r0

bpf_patch_insn_data()

Update offsets, if needed

Store used maps in ->used_maps, init verifier env

(1)

(2)

(3) (5)

(4) x N



Static Keys in BPF: Verification

● It turned out that verification is straightforward: just follow two 

edges of a branch, like in a conditional jump

● (Another option was to follow all static branches referencing 

the same static key as having same state. However, this is 

actually not guaranteed, as poking code is a per-instruction 

operation, so two branches referencing same static key may 

actually have different on/off states)



Questions?

https://www.linkedin.com/in/aspsk/
https://github.com/aspsk

