
Measuring BPF Implementation
Adherence: The

bpf_conformance Project
A Presentation for the Linux Plumbers Conference

Presenter: Alan Jowett alan.jowett@microsoft.com
Microsoft Corporation

mailto:alan.jowett@microsoft.com

Agenda

• Introduction
• Overview of the bpf_conformance suite
• The motivation for this test suite
• How conformance is measured
• Q&A

Introduction

• BPF – a synthetic ISA (instruction set architecture) used by a
software-defined virtual machine that executes in the Linux kernel
and other environments.

• BPF ISA is in the process of being standardized by a IETF working
group.

• BPF runtimes, both software and hardware, are proliferating
rapidly.

• If programs are to be portable, then all runtimes need to agree on
the ISA.

What is bpf_conformance?

• A project that measures a BPF runtime’s compliance with the draft
IETF BPF specification.

• Built on the uBPF project’s test collateral and extended to cover
newer ISA versions.

• Can be used either as a CLI or as a library.
• Uses the Linux kernel BPF runtime to validate the test collateral.

Why perform conformance testing?

• Validation of the draft IETF specification
• Verify that the Linux kernel BPF runtime and the draft spec match
• Identify gaps in the IETF draft.

• Interoperability
• By creating a test suite for BPF ISA, the conformity of BPF runtimes can be

measured.
• Ensure that the same bytecode has the same behavior in all runtimes.

• Bug detection
• Provide a mechanism to detect if an BPF runtime works as intended.

Why – Part 2

• Standardization Compliance
• A specification is more useful if there is a way to test the assertion that a

runtime conforms to that specification.

• Security
• The conformance suite is being used by the PREVAIL Verifier to validate

the model for the ISA.

• Documentation
• The conformance suite provides a method to quickly test out BPF

bytecode, allowing documentation authors to tease out the behavior of
the Linux BPF runtime without accessing the GPL source.

BPF Instruction Set Architecture

• RISC Architecture: BPF follows a Reduced Instruction Set
Computing (RISC) design for efficiency.

• Bytecode and Registers: BPF programs are expressed in bytecode
and use registers for data storage.

• Packet Processing: BPF was originally used for packet filtering and
manipulation in networking but is now more general purpose.

• Safety and Security: BPF is designed to run safely within a
sandboxed environment, preventing unintended side effects.

• Widely Used: BPF was initially adopted in the Linux kernel and has
been implemented in a variety of other platforms.

Conformance Testing Approach

• Declare an initial state for the VM
• Currently just the context memory.
• Pre-populated maps.

• Declare a set of BPF instructions to execute
• Declared as a set of BPF assembly.
• GCC style assembly (currently using handwritten parser).

• Declare an expected return code
• BPF runtime is expected to return the contents of %r0 as a 64bit unsigned

integer.

Example BPF conformance test case

Copyright (c) Big Switch Networks, Inc
SPDX-License-Identifier: Apache-2.0

-- asm
mov32 %r0, 0xf8
mov32 %r1, 16
lsh32 %r0, 28
%r0 == 0x80000000
arsh32 %r0, %r1
exit
-- result
0xffff8000

The bpf_conformance suite

• Test suite consists of a runner, a set of tests, and a set of plugins.
• Runner

• Parses each test file
• Generates BPF bytecode from assembly mnemonics.
• Invokes the plugin.
• Checks the return value.
• Records statistics (which instructions have been tested).

• Tests
• A small snippet of BPF assembly.
• Initial value in context.
• Expected %r0 on exit.

• Plugins
• Platform-specific wrapper for invoking BPF runtime.

The Implementation Variability Challenge

• BPF runtimes are exposed via widely differing APIs
• All APIs share a common behavior but vary significantly.

• OS platforms have a variety of IPC mechanisms.
• Command Line Interface

• Input / output streams
• List of arguments

• The bpf_conformance runner interacts with the per-runtime
plugin.

• Plugin accepts bytes code and context, returning the value of %r0
register on completion.

Variability Challenge – Part 2

• Plugin design is kept as simple as possible
• Plugins exist for:

• Linux – Loads the BPF bytecode via libbpf
• PREVAIL
• eBPF-for-Windows – Uses bpf2c compile bytecode to native and execute

it.
• rbpf – Rust wrapper that passes the bytecode to the rbpf runtime.
• uBPF – Loads BPF bytecode into the uBPF VM then either interprets or JIT

executes the code.
• WASM uBPF – Permits running BPF in the browser.

Future improvements

• Pass ELF file containing BPF program
• Passing map definitions
• Local calls
• Waiting on finalization of ELF BPF specification

• Enhance the existing test cases
• Test cases derived from uBPF
• Lack support for some newer BPF instructions (work is in progress to add

support for CPU v4)
• Deprecate BPF assembler in favor of GCC assembler?
• GitHub CI/CD uses older Linux kernel

• Makes it challenging to test newer instructions in CI/CD

Q&A

• GitHub Repo
• https://github.com/Alan-Jowett/bpf_conformance/

https://github.com/Alan-Jowett/bpf_conformance/

Thanks

• Dr Dave Thaler
• Primary contact for the IETF BPF ISA specification

• Dr Will Hawkins
• Bug fixing and beta testing ☺
• Reviewing this presentation

	Slide 1: Measuring BPF Implementation Adherence: The bpf_conformance Project
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: What is bpf_conformance?
	Slide 5: Why perform conformance testing?
	Slide 6: Why – Part 2
	Slide 7: BPF Instruction Set Architecture
	Slide 8: Conformance Testing Approach
	Slide 9: Example BPF conformance test case
	Slide 10: The bpf_conformance suite
	Slide 11: The Implementation Variability Challenge
	Slide 12: Variability Challenge – Part 2
	Slide 13: Future improvements
	Slide 14: Q&A
	Slide 15: Thanks

