

Blinking Lights1: Getting it wrong
again, again and again

Andrew Lunn
 <andrew@lunn.ch>

1 These slide contain animated gifs. Use the .odp file, not .pdf

mailto:andrew@lunn.ch

Problem: Configure LED controller

MAC

PHY

0000 = On - Link, Off - No Link
0001 = On - Link, Blink - Activity, Off - No Link
0010 = On- Full Duplex, Blink- Collision, Off- Half Duplex
0011 = On - Activity, Off - No Activity
0100 = Blink - Activity, Off - No Activity
0101 = On - Transmit, Off - No Transmit
….
0 Link/Activity

1 Link1000/Activity

2 Link100/Activity

3 Link10/Activity

4 Link100/1000/Activity

5 Link10/1000/Activity

6 Link10/100/Activity

….

00 Link up

01 Frame reception

10 Symbol Error

11 CRS signal

LED
CTRL

LED
CTRL

Bad existing solutions
Fri Nov 19 12:13:18 2010 +0000

 marvell,reg-init =

 /* irq, blink-activity, blink-link */

 <3 0x10 0 0x0242>; /* Reg 3,16 <- 0x0242 */

 The Marvell PHYs have a page select register at register 22 (0x16), we

 can specify any register by its page and register number. These are

 the first and second word. The third word contains a mask to be ANDed

 with the existing register value, and the fourth word is ORed with the

 result to yield the new register value.

Bad existing solutions...
2018-09-03 10:48:53 +0200

- vsc8531,led-[N]-mode : LED mode. Specify how the LED[N] should behave.

 N depends on the number of LEDs supported by a PHY.

 Allowed values are defined in

 "include/dt-bindings/net/mscc-phy-vsc8531.h".

 Default values are VSC8531_LINK_1000_ACTIVITY (1),

 VSC8531_LINK_100_ACTIVITY (2),

 VSC8531_LINK_ACTIVITY (0) and

 VSC8531_DUPLEX_COLLISION (8).

Why is it wrong?
● No consistency across PHYs. But it is a

common problem across PHYs and MACs
● Device tree describes hardware, not

configuration
● The user wants to decide, not the DT writer

A Better Way To Do This?
Wed Jul 03 2019: Florian Fainelli

> + A 0..3 element vector, with each element configuring the operating

> + mode of an LED. Omitted LEDs are turned off. Allowed values are

> + defined in "include/dt-bindings/net/realtek.h".

This should probably be made more general and we should define LED modes

that makes sense regardless of the PHY device, introduce a set of

generic functions for validating and then add new function pointer for

setting the LED configuration to the PHY driver. This would allow to be

more future proof where each PHY driver could expose standard LEDs class

devices to user-space, and it would also allow facilities like: ethtool

-p to plug into that.

Again, again, and again
2022-11-18: add dt configuration for dp83867 led modes

– Sorry, but NACK.

2022-09-22: net: phy: mxl-gpy: Add mode for 2 leds

– We have NACKed patches like this for a few years now

2020-08-22: net: phy: dp83867: apply ti,led-function and ti, led-ctrl to registers

– Sorry, but NACK.

2021-10-01: net: phy: mscc: Add possibilty to disable combined LED mode

– Sorry, but no DT property.

2021-08-09: net:phy:dp83867:implement the binding for status led

– Private properties for status LEDs are no longer permitted for new code.

Learning #1
● Search to see if somebody else has already

been NACKed for the same idea!
● “Those who do not learn history are doomed to

repeat it.”
– Most likely Philosopher George Santayana

Learning #2
● Solve common problems for every driver, not your

driver
● There is too much silo thinking in netdev

– Patches, reviews, reading the netdev list

● You can learn a lot from other drivers, if you make the
effort

● Page Pool is a good example.

Getting is wrong again, again, and
again...

● Everybody gets Pause wrong.
● Everybody gets Energy Efficient Ethernet wrong.
● Why?

– API is poorly designed and documented
– No core support. Drivers do everything

● Phylink core now does most of Pause
● EEE being rewritten moving ~80% code into core

Learning #3
● Make core do as much as possible
● Driver code KISS, just configure the hardware
● Rusty Russell ‘How Do I Make This API Hard to Misuse?’ metric

– 10. It's impossible to get wrong.
– 9. The compiler/linker won't let you get it wrong.
– 8. The compiler will warn if you get it wrong.
– 7. The obvious use is (probably) the correct one.
– ...
– 2. Read the implementation and you'll get it right.
– 1. Read the correct mailing list thread and you'll get it right.

https://ozlabs.org/~rusty/index.cgi/tech/2008-03-30.html

Blinking Lights: Getting it Right

Christian Marangi did most of the
implementation work.

Blinking Lights: Getting it Right

● Offload to hardware what Linux can already do
in Software

What Can Linux do with LEDs ?
$ ls /sys/class/leds/

input0::capslock input0::scrolllock platform::mute
tpacpi::lid_logo_dot tpacpi::standby input0::numlock
platform::micmute tpacpi::kbd_backlight tpacpi::power
tpacpi::thinkvantage

$ ls /sys/class/leds/input0\:\:numlock

brightness device max_brightness power subsystem trigger uevent

Brightness
echo 0 > brightness

echo 1 > brightness

$ cat /sys/class/leds/tpacpi\:\:kbd_backlight/max_brightness
2

Triggers – kernel controlling the LED
cat /sys/class/leds/tpacpi\:\:kbd_backlight/trigger

[none] kbd-scrolllock kbd-numlock kbd-capslock kbd-
kanalock kbd-shiftlock kbd-altgrlock kbd-ctrllock kbd-
altlock kbd-shiftllock kbd-shiftrlock kbd-ctrlllock kbd-
ctrlrlock disk-activity disk-read disk-write mtd nand-
disk cpu cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7 panic
BAT0-charging-or-full BAT0-charging BAT0-full BAT0-
charging-blink-full-solid usb-gadget usb-host rc-
feedback AC-online rfkill-any rfkill-none audio-mute
audio-micmute rfkill0 bluetooth-power hci0-power rfkill1
phy0rx phy0tx phy0assoc phy0radio rfkill2 heartbeat

Heartbeat trigger
echo heartbeat > \
/sys/class/leds/input0\:\:numlock/trigger

● How fast it blinks depends on CPU load!

Netdev trigger
echo netdev > /sys/class/leds/input0\:\:numlock/trigger
ls /sys/class/leds/input0\:\:numlock/
brightness half_duplex link_100 power tx
device interval link_1000 rx uevent
device_name link max_brightness subsystem
full_duplex link_10 offloaded trigger

echo enp2s0 > device_name
echo 1 > rx
echo 1 > tx

Polls netdev stats every 50ms to decide it to blink LED.

Offloading to Hardware
int (*brightness_set_blocking)(struct led_classdev *led_cdev,
 enum led_brightness brightness);
/*
 * Check if the LED driver supports the requested mode provided by the
 * defined supported trigger to setup the LED to hw control mode.
 */
int (*hw_control_is_supported)(struct led_classdev *led_cdev,
 unsigned long flags);
/*
 * Activate hardware control, LED driver will use the provided flags
 * from the supported trigger and setup the LED to be driven by hardware
 * following the requested mode from the trigger flags.
int (*hw_control_set)(struct led_classdev *led_cdev,
 unsigned long flags);
/*
 * Get the device this LED blinks in response to.
 * e.g. for a PHY LED, it is the network device. If the LED is
 * not yet associated to a device, return NULL.
 */
struct device *(*hw_control_get_device)(struct led_classdev *led_cdev);

flags bitmap
enum led_trigger_netdev_modes {
 TRIGGER_NETDEV_LINK = 0,
 TRIGGER_NETDEV_LINK_10,
 TRIGGER_NETDEV_LINK_100,
 TRIGGER_NETDEV_LINK_1000,
 TRIGGER_NETDEV_HALF_DUPLEX,
 TRIGGER_NETDEV_FULL_DUPLEX,
 TRIGGER_NETDEV_TX,
 TRIGGER_NETDEV_RX,

● One to one mapping to files in sysfs
full_duplex half_duplex link
link_10 link_100 link_1000
rx tx

echo 1 > left_led/link
echo 1 > right_led/rx
echo 1 > right_led/tx

Go blink your lights the right way!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

