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The Need for Namespace Support

Which of these measurements are from a container?
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Resulting IMA Log
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Evalution

The PTRACE wrapper executed a file, stopping after the first instruction to isolate the measurement and TPM 
extension.



Enabling non-repudiable 
logging of workload/platform specific 
system properties using eBPF.
avery.blanchard@duke.edu

https://github.com/avery-blanchard/container-ima

mailto:avery.blanchard@duke.edu
https://github.com/avery-blanchard/container-ima
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