
Extending Non-Repudiable Logs 
with eBPF

Avery Blanchard1, Gheorghe Almasi2, James Bottomley2and Hubertus 
Franke2

1 Duke University
2 IBM Research

November 13th, 2023



Hardware

Operating System

Userspace

Visibility into System State with eBPF

bpf()

Verifier

JIT compiler eBPF programs

event!

Boot loader

Application
bytecode



Hardware

Operating System

Userspace

Visibility into System State with eBPF

bpf()

Verifier

JIT compiler eBPF programs

event!

Boot loader

Application
bytecode

Event log



Hardware

Operating System

Userspace

Visibility into System State with eBPF

bpf()

Verifier

JIT compiler eBPF programs

event!

Boot loader

Application
bytecode

Event log

Can we trust this?



Hardware

Operating System

Userspace

Visibility into System State with eBPF

bpf()

Verifier

JIT compiler eBPF programs

event!

Boot loader

Application
bytecode

Event log

The addition of non-
repudiable logging 

to eBPF allows for the 
verification 

of workload/environment
specific data.



Hardware

Operating System

Userspace

Building a Chain of Trust

bpf()

Verifier

JIT compiler eBPF programs

event!

Boot loader

Application
bytecode

measures

measures



Hardware

Operating System

Userspace

Building a Chain of Trust

bpf()

Verifier

JIT compiler eBPF programs

event!

Boot loader

Application
bytecode

measures

measuressha256: ...

sha256: ...



Hardware

Operating System

Userspace

Rooting Trust in Hardware

bpf()

Verifier

JIT compiler eBPF programs

event!

Boot loader

Application
bytecode

measures

measures

TPM
EK

AK

PCRs
Cryptographic 

processor

stores

stores



Hardware

Operating System

Userspace

Extending Measurements Through Runtime

bpf()

Verifier

JIT compiler eBPF programs

event!

Boot loader

Application A
bytecode

measures

measures

TPM
EK

AK

PCRs
Cryptographic 

processor

stores

stores

Linux IMA

IMA
log

Application B

stores

measures



Building Trust in Environments

Attesting Machine

Remote Verifier
Attestation evidence



Attesting System Properties

Attestation
agent

Attesting Machine
Relying Party Verifier

Policy 
engine

Policy 
engine

request

challenge

evidence

response

evidence

result



Hardware

Operating System

Userspace

Non-repudiable Logging in eBPF Programs

bpf()

Verifier

JIT compiler eBPF programs

event!

Boot loader

Application A
bytecode

measures

measures

TPM
EK

AK

PCRs
Cryptographic 

processor

stores

stores

Measurement 
and

logging 
interface IMA

log

stores



Measurement Interface

Operating System

Hardware

eBPF programs
event!

bpf_process_measurement()

Kernel module

Measurement

Format log entry

Append log

Extend PCR

Log

TPM
EK

AK

PCRs
Cryptographic 

processor



From the eBPF side

• Available to sleepable eBPF
programs

• Programs can provoke the 
measurement and storage of 
formatted data and files



From the eBPF side

• Available to sleepable eBPF
programs

• Programs can provoke the 
measurement and storage of 
formatted data and files



Hardware

Operating System

Userspace

Example Use Case

bpf()

Verifier

JIT compiler eBPF programs

event!

Boot loader

Application A
bytecode

measures

measures

TPM
EK

AK

PCRs
Cryptographic 

processor

stores

stores

Linux IMA

IMA
log

Application B

stores

measures



Hardware

Operating System

Userspace

Extending Linux IMA to Containers

bpf()

Verifier

JIT compiler eBPF programs

event!

Boot loader

Application A
bytecode

measures

measures

TPM
EK

AK

PCRs
Cryptographic 

processor

stores

stores

Linux IMA

IMA
log

stores

measures

Container A

Application



The Need for Namespace Support

Which of these measurements are from a container?



Hardware

Operating System

Userspace

Extending Linux IMA to Containers

bpf()

Verifier

JIT compiler eBPF programs

event!

Boot loader

Application A
bytecode

measures

measures

TPM
EK

AK

PCRs
Cryptographic 

processor

stores

stores

Linux IMA

IMA
log

stores

measures

Container A

Application
Isolated 
through 

namespaces 
and cgroups



Hardware

Operating System

Userspace

Adding Namespace Support to IMA

bpf()

Verifier

JIT compiler eBPF programs

mmap_file

Boot loader

Application A
bytecode

measures

measures

TPM
EK

AK

PCRs
Cryptographic 

processor

stores

stores

IMA
log

stores

measures

Container A

Application

Measurement 
and

logging 
interface



Resulting IMA Log



Resulting IMA Log



Evalution

The PTRACE wrapper executed a file, stopping after the first instruction to isolate the measurement and TPM 
extension.



Enabling non-repudiable 
logging of workload/platform specific 
system properties using eBPF.
avery.blanchard@duke.edu

https://github.com/avery-blanchard/container-ima

mailto:avery.blanchard@duke.edu
https://github.com/avery-blanchard/container-ima

	Slide 1: Extending Non-Repudiable Logs with eBPF
	Slide 2: Visibility into System State with eBPF
	Slide 3: Visibility into System State with eBPF
	Slide 4: Visibility into System State with eBPF
	Slide 5: Visibility into System State with eBPF
	Slide 11: Building a Chain of Trust
	Slide 12: Building a Chain of Trust
	Slide 13: Rooting Trust in Hardware
	Slide 14: Extending Measurements Through Runtime
	Slide 16: Building Trust in Environments
	Slide 17: Attesting System Properties
	Slide 18: Non-repudiable Logging in eBPF Programs
	Slide 19: Measurement Interface
	Slide 20: From the eBPF side
	Slide 21: From the eBPF side
	Slide 22: Example Use Case
	Slide 23: Extending Linux IMA to Containers
	Slide 24: The Need for Namespace Support
	Slide 25: Extending Linux IMA to Containers
	Slide 26: Adding Namespace Support to IMA
	Slide 27: Resulting IMA Log
	Slide 28: Resulting IMA Log
	Slide 29: Evalution
	Slide 30: Enabling non-repudiable logging of workload/platform specific system properties using eBPF.

