Google
eBPF Shenanigans with Flux

Crazy kernel schedulers implemented in BPF

Barret Rhoden brho@gooagle.com
Linux Plumbers Conference (LPC 23)
https://Ipc.events/event/17/contributions/1601/

mailto:brho@google.com
https://lpc.events/event/17/contributions/1601/

Agenda

e Brief intro to Flux

o Framework for designing schedulers
o Written in BPF for Ghost (LPC '22)

e Building data structures from Array Maps
e Simulating object-oriented programming without function pointers
e Future plans and open sourcing

Google Linux Plumbers Conference ‘23

https://lpc.events/event/16/contributions/1365/attachments/986/1912/lpc22-ebpf-kernel-scheduling-with-ghost.pdf

Flux in 5 minutes

Google

Ghost-BPF Scheduling

e All scheduling decisions are made in BPF
e Userspace has arole, but it is not in the critical path

Kernel
space

Kernel

Messages / Funcs

—

Ghost
scheduling class

Google

Transactions

“BPF User
space” Application space
/,‘ ~
A(/) -~ A
BPF Agents Userspace Agents
U il
[> | >
Maps
CPU scheduling Statistics, Parameter
decisions Tweaking, Monitoring

Linux Plumbers Conference 23

Problem

Design a scheduler, given:

e A large, multicore machine, possibly with a fun cache topology
e For applications with different classes of threads or workloads
o e.g. A set of threads handling RPCs and a set doing Housekeeping

e And your available set of cpus may change at runtime

o Yielding to CFS kworkers
o You're a paravirtualized guest
o Shared tenancy machine

Google Linux Plumbers Conference ‘23

Decomposing the scheduler

e We have multiple cpus: make them a central component of the scheduler
e What if | dedicated certain cpus to certain classes of threads in an app?
o Partition the cpus, such that threads of the same type run in the same partition

e We can write subschedulers for each thread type

o RPC threads get EDF, Housekeeping gets FIFO, etc.
o Don't need to develop one magic policy that works for all thread types

e Overall partitioning policy, e.g. “Housekeeping gets 5 cpus, RPC gets the rest”
e Wait... where does that partitioning policy come from?

Google Linux Plumbers Conference ‘23

CPU Partitioning is Scheduling

e The allocation of cpus to subschedulers is itself a scheduling decision
o We need schedulers of schedulers!

e The interface between coordinating schedulers is cpus

o When schedulers talk to each other: make requests, make allocations, etc., they talk about cpus
o This is a universal concept in scheduling: applies to both M:N scheduling and paravirt scheduling

Google Linux Plumbers Conference ‘23

Flux:

Compose an overall scheduler from a hierarchy of smaller subschedulers
A thread belongs to a single subscheduler at a time.
Cpus are allocated to subschedulers.

Subschedulers:
o Arejust blobs of code and data
o Existin a parent-child relationship
o Schedule either a thread or another subscheduler

Google Linux Plumbers Conference ‘23

Hello world Flux scheduler: Global FIFO policy

ROCI

/

Biff

Google

N

Idle

Linux Plumbers Conference 23

Hello world Flux scheduler: Global FIFO policy

ROCI ROCI:

a cpu scheduler (Root One Child and Idle)

/ \ Policy:

Give Biff whatever it wants, give Idle the rest

Biff Idle

Google Linux Plumbers Conference 23 10

Hello world Flux scheduler: Global FIFO policy

ROCI ROCI:

a cpu scheduler (Root One Child and Idle)

/ \ Policy:

Give Biff whatever it wants, give Idle the rest

Biff Idle

/

Biff:

a thread scheduler
Policy:
Global FIFO

Google Linux Plumbers Conference 23 1

Hello world Flux scheduler: Global FIFO policy

ROCI ROCI:

a cpu scheduler (Root One Child and Idle)

/ \ Policy:

Give Biff whatever it wants, give Idle the rest

Biff Idle
Biff: Idle:
a thread scheduler some sort of scheduler
Policy: Policy:
Global FIFO halt the cpu

Google Linux Plumbers Conference 23 12

Hello world Flux scheduler: Global FIFO policy

Google

cpu grants

ROCI

/

Biff

cpu yields and
cpu preemptions

CPU Lifecycle

1: Biff calls flux_request_for_cpus(nr_cpus)

2: ROCI callback:
roci_request_for_cpus(biff, nr_cpus)

3: ROCI picks a cpu for Biff, possibly sends an IPI

On that cpu:

4: ROCl calls flux_cpu_grant(biff)

5: Biff picks a task, calls flux_run_thread()
6: Or Biff calls flux_cpu_yield()

Linux Plumbers Conference 23 13

Okay... How are we doing this in BPF?

e Data structures of different types
o Different types of threads
o Different types of subschedulers
o Cpus are important too - need structs for those
e That exist in some hierarchy
o Pointers?
o And we're making decisions. Linked lists? RB Trees?
o Lists of threads, lists of cpus

e And | saw callbacks in there...

Google

Linux Plumbers Conference 23

Data structures
and whatnot

Memory management with ARRAY_MAPs

e Just about every allocation we make is from an ARRAY_MAP
o Subschedulers, threads, per-cpu data, etc.

e These are mmapable (at least those without spinlocks)

o Userspace agent can adjust policy bits with atomics
o Userspace application can tell us thread-specific info, e.g. an RPC deadline

e Pointers are replaced with dense integers and an (implicit) array

o struct flux_sched *rociis known as “sched_id 1”
o struct flux_thread *foois known as “thread_id 42"

e Thread IDs are discoverable via another map (e.g. pid_t -> dense index)
e And we can build our own data structures

Google Linux Plumbers Conference ‘23 16

Linked Lists: BSD-style “sys/queue.h” list / tailq

struct arr_list {
unsigned int first;

unsigned int last;

} Pointers are replaced with integers

struct arr_list_entry {
unsigned int next;
unsigned int prev;

}s

struct some_element {
struct arr_list_entry link; —— |

Embed the link, like usual

int foo;

'

Google

Linux Plumbers Conference 23

Basic Structures: BSD-style “sys/queue.h” list / tailg

e The usual operations: Pass the array and the array size...
o First, next, prev

o Insert head, Insert tail
o Remove
o arr_list_insert_tail(arr, arr_sz, head, elem, field)

e for_each iteration
o It's BPF, so we can't loop forever
o “for each up to N times” (for debugging)

o arr_list_foreach(var, arr, arr_sz, head, field, _i, max)

Google Linux Plumbers Conference 23 18

Why pass the array size?

arr_list_insert_tail(arr, arr_sz, head, elem, field)
Gotta convince the verifier any time we convert from index to pointer
Treat idx == 0 as “no element” and idx == 1 is the Oth element of the array

bpf_array_elem_sz(arr, arr_sz, id - 1);
o That's some inline asm to force the bounds check on arr_sz
o Essentially &arr[idx]

Google Linux Plumbers Conference ‘23

19

Subtle point about locking and arrays

e Picture the ARRAY_MAP of struct flux_thread

o s it N elements of type struct flux_thread?
o That would mean each lookup is a bpf_map_lookup_elem() call
o Which you can’t do while holding a bpf spinlock!

e Instead, it's an ARRAY_MAP of one item, which is an array of N threads

e Same memory layout, but lets you do one Map Lookup for all threads

o Get the array outside the lock, etc.
o Similarly, could put the array in BSS

e This trick doesn’t work for our struct flux_sched arrays

o Each sched has a spinlock, and you can't put spinlocks in interior structs
o Can't put spinlocks in BSS either (or at least | couldn't...)

Google Linux Plumbers Conference ‘23

20

AVL Trees! (Self-balancing, binary trees)

AVL are denser than RB and easier to implement
Replace while loops with for (i =0; i < MAX_AVL_HEIGHT; i++)
That means we might not be able to stuff all nodes into the tree

Solution: overflow linked list
o e.g. “Get Min” might not always be the real minimum
o Check the front of the overflow list for any Get Min or Get Max

Google Linux Plumbers Conference ‘23

21

Half-baked Object-Oriented programming with Unions

Google

We've got threads and subschedulers of different types
But a BPF Map can only have a single type.

Two classic styles of hooking specific objects to generic ones:
o Haveavoid *private blob inthe generic struct. e.g. VFS
m Don't want to use more pointers
o Embed the generic object in the specific object. e.g. container_of() stuff.
m Need the objects to all be the same size

Add a union to the overall object

o Each possible thread type gets a union member
o e.g. One size for every thread struct, regardless of type

Linux Plumbers Conference 23

22

Example Thread Struct

struct flux_thread {

/ the generic part, including f.type
struct __flux_thread f;:

union A
struct biff_flux_thread biff;
struct doc_flux_thread doc;
I
'

Google

the specific part, based on the
thread's type

\

Linux Plumbers Conference 23

Different memory management than the kptrs style

Kptrs managed memory style:

e bpf_obj_new(), bpf_obj_drop(), bpf_list_head, bpf_rbtree_add, bpf_rb_node, etc.
e The verifier knows what you're doing

versus
Blob of RAM, build what you want!

e The overall ARRAY_MAP is a blob of memory, up to us to allocate within it
e The verifier just need to make sure you stay inside the blob

Google Linux Plumbers Conference ‘23

24

https://lwn.net/Articles/924128/

Pros and Cons: Kptrs style

Dynamic allocation

Kernel can enforce invariants on your structures (e.g. safely traverse a tree)
Verifier needs to know about your types

Need to associate your spinlocks with your data structures

Ownership model for memory. Can an object belong to multiple lists/trees yet?

Need the helpers / kfuncs built into the kernel.
o Want a new structure? Need a new kernel.
o Want a new operation on an existing structure? Need a new kernel.

e Can't touch the managed memory.
o e.g.atomic_or a bitin a bpf_cpumask from userspace or whatever

Google Linux Plumbers Conference ‘23

25

https://docs.kernel.org/bpf/cpumasks.html

Pros and Cons: Blob of RAM

e mmappable by userspace
e No guardrails. The verifier protects the kernel, not your code.

e Hard to convince the verifier your code terminates

o e.g.avl_tree_insert() isvery branchy
o Had to limit the size of the AVL tree and have that overflow list

e Giant blob of RAM? That's wasted kernel memory.
o TBD - we think we can fault in the ARRAY_MAP on demand, instead of populating it.

Google

Linux Plumbers Conference 23

26

Function pointers?

Google

There are no function pointers

Google

How do we get from flux_request_for_cpus() to
roci_request_for_cpus()?
You'd expect something like “roci->ops.request_for_cpus(nr_cpus)”
We can't follow function pointers
But every subscheduler and thread has an integer type

Flux library code uses macros that generate switch statements, e.qg.

#define __pick_next_task(sched, cpu, ctx) ({

})

switch ((sched)->f.type) {

__gen_cpu_op_cases(__cat_op, _pick_next_task, sched, cpu, ctx)

) \

Your agent must define this

Linux Plumbers Conference 23

28

Compose your agent.bpf.c from subschedulers

#define __gen_cpu_op_cases(op_type, op, sched, ...)
case SCHED_TYPE_HOUSEKEEPING:
op_type(biff, op)(sched, __VA_ARGS__);
break;
case SCHED_TYPE_RPC:

op_type(doc, op)(sched, __VA_ARG
break;
case SCHED_TYPE_IDLE:

Similar to function pointers, tell Flux what
code to use for which scheduler

op_type(idle, op)(sched, __VA_ARGS__);
break;

#include "third_party/ghost/bpf/bpf/biff_flux.bpf.c"

#include "third_party/ghost/bpf/bpf/doc_flux.bpf.c"
#include "third_party/ghost/bpf/bpf/idle_flux.bpf.c"

Literally composing your agent from
subscheduler C code

Google

Linux Plumbers Conference 23

29

Future plans
and
Open sourcing

Google

Code Stuff

e https://github.com/qooaqgle/ghost-userspace
o flux_header_bpf.h, flux_api.bpf.c, flux_dispatch.bpf.c
o queue.bpf.h, avl.bpf.h

e Flux is built on top of Ghost.
e The linked list and AVL tree and whatnot can be used independently of Flux

e The model of “build your structures from a blob of memory” can be used in any
BPF program

Google Linux Plumbers Conference 23

31

https://github.com/google/ghost-userspace
https://github.com/google/ghost-userspace/blob/main/third_party/bpf/flux_header_bpf.h
https://github.com/google/ghost-userspace/blob/main/third_party/bpf/flux_api.bpf.c
https://github.com/google/ghost-userspace/blob/main/third_party/bpf/flux_dispatch.bpf.c
https://github.com/google/ghost-userspace/blob/main/lib/queue.bpf.h
https://github.com/google/ghost-userspace/blob/main/lib/avl.bpf.h

Speaking of open source

Although not related directly to Flux or BPF shenanigans:

e “Google is committed to upstreaming our changes”
e “Google's prodkernel cadence follows the LTS stable kernel and is on track to
pickup the 6.x LTS kernel”

Google Linux Plumbers Conference ‘23

32

Ghost and Sched Ext (SCX)

e Overall vision: build Ghost on top of SCX
e Port Flux to use SCX's interfaces

e Open question of whether to stick with the “blob of memory” or use kptrs
o The memory management of threads, cpus, etc. is all handled by the Flux code

e I|deally any scheduler written against Flux-on-Ghost would work on Flux-on-SCX

Google Linux Plumbers Conference ‘23

33

Thanks!

e Flux: a framework for building schedulers from a hierarchy of subschedulers
o It's crazy, and there’s a lot more to cover. Maybe some other time.

e You can build anything out of a blob of memory, even in BPF
o Pointers -> Integers + ARRAY_MAPs

e You can even do object oriented programming in BPF
o With some macros and some patience...

Google Linux Plumbers Conference ‘23

34

