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Agenda

● Brief intro to Flux
○ Framework for designing schedulers
○ Written in BPF for Ghost (LPC ‘22)

● Building data structures from Array Maps
● Simulating object-oriented programming without function pointers
● Future plans and open sourcing
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https://lpc.events/event/16/contributions/1365/attachments/986/1912/lpc22-ebpf-kernel-scheduling-with-ghost.pdf
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Flux in 5 minutes

3



Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

● All scheduling decisions are made in BPF
● Userspace has a role, but it is not in the critical path
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Problem

Design a scheduler, given:

● A large, multicore machine, possibly with a fun cache topology
● For applications with different classes of threads or workloads

○ e.g. A set of threads handling RPCs and a set doing Housekeeping
● And your available set of cpus may change at runtime

○ Yielding to CFS kworkers
○ You’re a paravirtualized guest
○ Shared tenancy machine
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Decomposing the scheduler

● We have multiple cpus: make them a central component of the scheduler
● What if I dedicated certain cpus to certain classes of threads in an app?

○ Partition the cpus, such that threads of the same type run in the same partition
● We can write subschedulers for each thread type

○ RPC threads get EDF, Housekeeping gets FIFO, etc.
○ Don’t need to develop one magic policy that works for all thread types

● Overall partitioning policy, e.g. “Housekeeping gets 5 cpus, RPC gets the rest”
● Wait… where does that partitioning policy come from?
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CPU Partitioning is Scheduling

● The allocation of cpus to subschedulers is itself a scheduling decision
○ We need schedulers of schedulers!

● The interface between coordinating schedulers is cpus
○ When schedulers talk to each other: make requests, make allocations, etc., they talk about cpus
○ This is a universal concept in scheduling: applies to both M:N scheduling and paravirt scheduling
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Flux:

● Compose an overall scheduler from a hierarchy of smaller subschedulers
● A thread belongs to a single subscheduler at a time.
● Cpus are allocated to subschedulers.
● Subschedulers:

○ Are just blobs of code and data
○ Exist in a parent-child relationship
○ Schedule either a thread or another subscheduler
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Hello world Flux scheduler: Global FIFO policy
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ROCI

Biff Idle
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Hello world Flux scheduler: Global FIFO policy
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ROCI

Biff Idle

ROCI: 
a cpu scheduler  (Root One Child and Idle)

Policy: 
Give Biff whatever it wants, give Idle the rest 
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Hello world Flux scheduler: Global FIFO policy
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ROCI

Biff Idle

ROCI: 
a cpu scheduler  (Root One Child and Idle)

Policy: 
Give Biff whatever it wants, give Idle the rest 

Biff:
a thread scheduler

Policy:
Global FIFO
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Hello world Flux scheduler: Global FIFO policy
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ROCI

Biff Idle

ROCI: 
a cpu scheduler  (Root One Child and Idle)

Policy: 
Give Biff whatever it wants, give Idle the rest 

Biff:
a thread scheduler

Policy:
Global FIFO

Idle:
some sort of scheduler

Policy:
halt the cpu
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Hello world Flux scheduler: Global FIFO policy
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ROCI

Biff

cpu grants

cpu yields and
cpu preemptions

CPU Lifecycle
1: Biff calls flux_request_for_cpus(nr_cpus)
2: ROCI callback:
     roci_request_for_cpus(biff, nr_cpus)
3: ROCI picks a cpu for Biff, possibly sends an IPI

On that cpu:
4: ROCI calls flux_cpu_grant(biff)
5: Biff picks a task, calls flux_run_thread()
6: Or Biff calls flux_cpu_yield()
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Okay…  How are we doing this in BPF?

● Data structures of different types
○ Different types of threads
○ Different types of subschedulers
○ Cpus are important too - need structs for those

● That exist in some hierarchy
○ Pointers?
○ And we’re making decisions.  Linked lists?  RB Trees?
○ Lists of threads, lists of cpus

● And I saw callbacks in there…
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Data structures 
and whatnot
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Memory management with ARRAY_MAPs

● Just about every allocation we make is from an ARRAY_MAP
○ Subschedulers, threads, per-cpu data, etc.

● These are mmapable (at least those without spinlocks)
○ Userspace agent can adjust policy bits with atomics
○ Userspace application can tell us thread-specific info, e.g. an RPC deadline

● Pointers are replaced with dense integers and an (implicit) array
○ struct flux_sched *roci is known as “sched_id 1”
○ struct flux_thread *foo is known as “thread_id 42”

● Thread IDs are discoverable via another map (e.g. pid_t -> dense index)
● And we can build our own data structures
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Linked Lists: BSD-style “sys/queue.h” list / tailq

struct arr_list {
unsigned int first;
unsigned int last;

};

struct arr_list_entry {
unsigned int next;
unsigned int prev;

};

struct some_element {
struct arr_list_entry link;
int foo;

};          
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Pointers are replaced with integers 

Embed the link, like usual
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● The usual operations:
○ First, next, prev
○ Insert head, Insert tail
○ Remove
○ arr_list_insert_tail(arr, arr_sz, head, elem, field)

● for_each iteration
○ It’s BPF, so we can’t loop forever
○ “for each up to N times”  (for debugging)
○ arr_list_foreach(var, arr, arr_sz, head, field, _i, max)

Basic Structures: BSD-style “sys/queue.h” list / tailq
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Pass the array and the array size… 
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Why pass the array size?

● arr_list_insert_tail(arr, arr_sz, head, elem, field)
● Gotta convince the verifier any time we convert from index to pointer
● Treat idx == 0 as “no element” and idx == 1 is the 0th element of the array
● bpf_array_elem_sz(arr, arr_sz, id - 1);

○ That’s some inline asm to force the bounds check on arr_sz
○ Essentially &arr[idx]
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Subtle point about locking and arrays

● Picture the ARRAY_MAP of struct flux_thread
○ Is it N elements of type struct flux_thread?
○ That would mean each lookup is a bpf_map_lookup_elem() call
○ Which you can’t do while holding a bpf spinlock!

● Instead, it’s an ARRAY_MAP of one item, which is an array of N threads
● Same memory layout, but lets you do one Map Lookup for all threads

○ Get the array outside the lock, etc.
○ Similarly, could put the array in BSS

● This trick doesn’t work for our struct flux_sched arrays
○ Each sched has a spinlock, and you can’t put spinlocks in interior structs
○ Can’t put spinlocks in BSS either (or at least I couldn’t…)
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AVL Trees!  (Self-balancing, binary trees)

● AVL are denser than RB and easier to implement
● Replace while loops with for (i =0; i < MAX_AVL_HEIGHT; i++)
● That means we might not be able to stuff all nodes into the tree
● Solution: overflow linked list

○ e.g. “Get Min” might not always be the real minimum
○ Check the front of the overflow list for any Get Min or Get Max
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Half-baked Object-Oriented programming with Unions

● We’ve got threads and subschedulers of different types
● But a BPF Map can only have a single type.
● Two classic styles of hooking specific objects to generic ones:

○ Have a void *private blob in the generic struct.  e.g. VFS
■ Don’t want to use more pointers

○ Embed the generic object in the specific object. e.g. container_of() stuff.
■ Need the objects to all be the same size

● Add a union to the overall object
○ Each possible thread type gets a union member
○ e.g. One size for every thread struct, regardless of type
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Example Thread Struct

struct flux_thread {

struct __flux_thread f;

union {

struct biff_flux_thread biff;

struct doc_flux_thread doc;

};

};
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the generic part, including f.type

the specific part, based on the 
thread’s type
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Different memory management than the kptrs style

Kptrs managed memory style: 

● bpf_obj_new(), bpf_obj_drop(), bpf_list_head, bpf_rbtree_add, bpf_rb_node, etc. 
● The verifier knows what you’re doing

versus

Blob of RAM, build what you want!

● The overall ARRAY_MAP is a blob of memory, up to us to allocate within it
● The verifier just need to make sure you stay inside the blob 

24

https://lwn.net/Articles/924128/
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Pros and Cons: Kptrs style

● Dynamic allocation
● Kernel can enforce invariants on your structures (e.g. safely traverse a tree)
● Verifier needs to know about your types
● Need to associate your spinlocks with your data structures
● Ownership model for memory.  Can an object belong to multiple lists/trees yet?
● Need the helpers / kfuncs built into the kernel.  

○ Want a new structure?  Need a new kernel.
○ Want a new operation on an existing structure?  Need a new kernel.

● Can’t touch the managed memory.  
○ e.g. atomic_or a bit in a bpf_cpumask from userspace or whatever
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https://docs.kernel.org/bpf/cpumasks.html
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Pros and Cons: Blob of RAM

● mmappable by userspace
● No guardrails.  The verifier protects the kernel, not your code.
● Hard to convince the verifier your code terminates

○ e.g. avl_tree_insert() is very branchy
○ Had to limit the size of the AVL tree and have that overflow list

● Giant blob of RAM?  That’s wasted kernel memory.
○ TBD - we think we can fault in the ARRAY_MAP on demand, instead of populating it.
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Function pointers?
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There are no function pointers

● How do we get from flux_request_for_cpus() to 
roci_request_for_cpus()?

● You’d expect something like “roci->ops.request_for_cpus(nr_cpus)”
● We can’t follow function pointers
● But every subscheduler and thread has an integer type
● Flux library code uses macros that generate switch statements, e.g.

#define __pick_next_task(sched, cpu, ctx) ({
        switch ((sched)->f.type) {
        __gen_cpu_op_cases(__cat_op, _pick_next_task, sched, cpu, ctx)
        };
})
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Your agent must define this
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Compose your agent.bpf.c from subschedulers

#define __gen_cpu_op_cases(op_type, op, sched, ...)
        case SCHED_TYPE_HOUSEKEEPING:
                op_type(biff, op)(sched, __VA_ARGS__);
                break;
        case SCHED_TYPE_RPC:
                op_type(doc, op)(sched, __VA_ARGS__);
                break;
        case SCHED_TYPE_IDLE:
                op_type(idle, op)(sched, __VA_ARGS__);
                break;
...

#include "third_party/ghost/bpf/bpf/biff_flux.bpf.c"
#include "third_party/ghost/bpf/bpf/doc_flux.bpf.c"
#include "third_party/ghost/bpf/bpf/idle_flux.bpf.c"
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Similar to function pointers, tell Flux what 
code to use for which scheduler

Literally composing your agent from 
subscheduler C code
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Future plans
and
Open sourcing
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Code Stuff

● https://github.com/google/ghost-userspace 
○ flux_header_bpf.h, flux_api.bpf.c, flux_dispatch.bpf.c 
○ queue.bpf.h, avl.bpf.h

● Flux is built on top of Ghost.
● The linked list and AVL tree and whatnot can be used independently of Flux
● The model of “build your structures from a blob of memory” can be used in any 

BPF program
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https://github.com/google/ghost-userspace
https://github.com/google/ghost-userspace/blob/main/third_party/bpf/flux_header_bpf.h
https://github.com/google/ghost-userspace/blob/main/third_party/bpf/flux_api.bpf.c
https://github.com/google/ghost-userspace/blob/main/third_party/bpf/flux_dispatch.bpf.c
https://github.com/google/ghost-userspace/blob/main/lib/queue.bpf.h
https://github.com/google/ghost-userspace/blob/main/lib/avl.bpf.h
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Speaking of open source

Although not related directly to Flux or BPF shenanigans:

● “Google is committed to upstreaming our changes” 
● “Google's prodkernel cadence follows the LTS stable kernel and is on track to 

pickup the 6.x LTS kernel”
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Ghost and Sched Ext (SCX)

● Overall vision: build Ghost on top of SCX
● Port Flux to use SCX’s interfaces
● Open question of whether to stick with the “blob of memory” or use kptrs

○ The memory management of threads, cpus, etc. is all handled by the Flux code
● Ideally any scheduler written against Flux-on-Ghost would work on Flux-on-SCX
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Thanks!

● Flux: a framework for building schedulers from a hierarchy of subschedulers
○ It’s crazy, and there’s a lot more to cover.  Maybe some other time.

● You can build anything out of a blob of memory, even in BPF
○ Pointers -> Integers + ARRAY_MAPs

● You can even do object oriented programming in BPF
○ With some macros and some patience…
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