
Linux Plumbers Conference ‘23

eBPF Shenanigans with Flux
Crazy kernel schedulers implemented in BPF

Barret Rhoden brho@google.com
Linux Plumbers Conference (LPC ‘23)
https://lpc.events/event/17/contributions/1601/

mailto:brho@google.com
https://lpc.events/event/17/contributions/1601/

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Agenda

● Brief intro to Flux
○ Framework for designing schedulers
○ Written in BPF for Ghost (LPC ‘22)

● Building data structures from Array Maps
● Simulating object-oriented programming without function pointers
● Future plans and open sourcing

2

https://lpc.events/event/16/contributions/1365/attachments/986/1912/lpc22-ebpf-kernel-scheduling-with-ghost.pdf

Linux Plumbers Conference ‘23

Flux in 5 minutes

3

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

● All scheduling decisions are made in BPF
● Userspace has a role, but it is not in the critical path

Ghost-BPF Scheduling

User
space

Transactions

Messages / Funcs

Userspace Agents

Statistics, Parameter
Tweaking, Monitoring

Kernel

Kernel
space

Ghost
scheduling class

“BPF
space” Application

BPF Agents

CPU scheduling
decisions

BPF
Maps

4

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Problem

Design a scheduler, given:

● A large, multicore machine, possibly with a fun cache topology
● For applications with different classes of threads or workloads

○ e.g. A set of threads handling RPCs and a set doing Housekeeping
● And your available set of cpus may change at runtime

○ Yielding to CFS kworkers
○ You’re a paravirtualized guest
○ Shared tenancy machine

5

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Decomposing the scheduler

● We have multiple cpus: make them a central component of the scheduler
● What if I dedicated certain cpus to certain classes of threads in an app?

○ Partition the cpus, such that threads of the same type run in the same partition
● We can write subschedulers for each thread type

○ RPC threads get EDF, Housekeeping gets FIFO, etc.
○ Don’t need to develop one magic policy that works for all thread types

● Overall partitioning policy, e.g. “Housekeeping gets 5 cpus, RPC gets the rest”
● Wait… where does that partitioning policy come from?

6

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

CPU Partitioning is Scheduling

● The allocation of cpus to subschedulers is itself a scheduling decision
○ We need schedulers of schedulers!

● The interface between coordinating schedulers is cpus
○ When schedulers talk to each other: make requests, make allocations, etc., they talk about cpus
○ This is a universal concept in scheduling: applies to both M:N scheduling and paravirt scheduling

7

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Flux:

● Compose an overall scheduler from a hierarchy of smaller subschedulers
● A thread belongs to a single subscheduler at a time.
● Cpus are allocated to subschedulers.
● Subschedulers:

○ Are just blobs of code and data
○ Exist in a parent-child relationship
○ Schedule either a thread or another subscheduler

8

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Hello world Flux scheduler: Global FIFO policy

9

ROCI

Biff Idle

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Hello world Flux scheduler: Global FIFO policy

10

ROCI

Biff Idle

ROCI:
a cpu scheduler (Root One Child and Idle)

Policy:
Give Biff whatever it wants, give Idle the rest

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Hello world Flux scheduler: Global FIFO policy

11

ROCI

Biff Idle

ROCI:
a cpu scheduler (Root One Child and Idle)

Policy:
Give Biff whatever it wants, give Idle the rest

Biff:
a thread scheduler

Policy:
Global FIFO

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Hello world Flux scheduler: Global FIFO policy

12

ROCI

Biff Idle

ROCI:
a cpu scheduler (Root One Child and Idle)

Policy:
Give Biff whatever it wants, give Idle the rest

Biff:
a thread scheduler

Policy:
Global FIFO

Idle:
some sort of scheduler

Policy:
halt the cpu

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Hello world Flux scheduler: Global FIFO policy

13

ROCI

Biff

cpu grants

cpu yields and
cpu preemptions

CPU Lifecycle
1: Biff calls flux_request_for_cpus(nr_cpus)
2: ROCI callback:
 roci_request_for_cpus(biff, nr_cpus)
3: ROCI picks a cpu for Biff, possibly sends an IPI

On that cpu:
4: ROCI calls flux_cpu_grant(biff)
5: Biff picks a task, calls flux_run_thread()
6: Or Biff calls flux_cpu_yield()

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Okay… How are we doing this in BPF?

● Data structures of different types
○ Different types of threads
○ Different types of subschedulers
○ Cpus are important too - need structs for those

● That exist in some hierarchy
○ Pointers?
○ And we’re making decisions. Linked lists? RB Trees?
○ Lists of threads, lists of cpus

● And I saw callbacks in there…

14

Linux Plumbers Conference ‘23

Data structures
and whatnot

15

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Memory management with ARRAY_MAPs

● Just about every allocation we make is from an ARRAY_MAP
○ Subschedulers, threads, per-cpu data, etc.

● These are mmapable (at least those without spinlocks)
○ Userspace agent can adjust policy bits with atomics
○ Userspace application can tell us thread-specific info, e.g. an RPC deadline

● Pointers are replaced with dense integers and an (implicit) array
○ struct flux_sched *roci is known as “sched_id 1”
○ struct flux_thread *foo is known as “thread_id 42”

● Thread IDs are discoverable via another map (e.g. pid_t -> dense index)
● And we can build our own data structures

16

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Linked Lists: BSD-style “sys/queue.h” list / tailq

struct arr_list {
unsigned int first;
unsigned int last;

};

struct arr_list_entry {
unsigned int next;
unsigned int prev;

};

struct some_element {
struct arr_list_entry link;
int foo;

};

17

Pointers are replaced with integers

Embed the link, like usual

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

● The usual operations:
○ First, next, prev
○ Insert head, Insert tail
○ Remove
○ arr_list_insert_tail(arr, arr_sz, head, elem, field)

● for_each iteration
○ It’s BPF, so we can’t loop forever
○ “for each up to N times” (for debugging)
○ arr_list_foreach(var, arr, arr_sz, head, field, _i, max)

Basic Structures: BSD-style “sys/queue.h” list / tailq

18

Pass the array and the array size…

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Why pass the array size?

● arr_list_insert_tail(arr, arr_sz, head, elem, field)
● Gotta convince the verifier any time we convert from index to pointer
● Treat idx == 0 as “no element” and idx == 1 is the 0th element of the array
● bpf_array_elem_sz(arr, arr_sz, id - 1);

○ That’s some inline asm to force the bounds check on arr_sz
○ Essentially &arr[idx]

19

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Subtle point about locking and arrays

● Picture the ARRAY_MAP of struct flux_thread
○ Is it N elements of type struct flux_thread?
○ That would mean each lookup is a bpf_map_lookup_elem() call
○ Which you can’t do while holding a bpf spinlock!

● Instead, it’s an ARRAY_MAP of one item, which is an array of N threads
● Same memory layout, but lets you do one Map Lookup for all threads

○ Get the array outside the lock, etc.
○ Similarly, could put the array in BSS

● This trick doesn’t work for our struct flux_sched arrays
○ Each sched has a spinlock, and you can’t put spinlocks in interior structs
○ Can’t put spinlocks in BSS either (or at least I couldn’t…)

20

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

AVL Trees! (Self-balancing, binary trees)

● AVL are denser than RB and easier to implement
● Replace while loops with for (i =0; i < MAX_AVL_HEIGHT; i++)
● That means we might not be able to stuff all nodes into the tree
● Solution: overflow linked list

○ e.g. “Get Min” might not always be the real minimum
○ Check the front of the overflow list for any Get Min or Get Max

21

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Half-baked Object-Oriented programming with Unions

● We’ve got threads and subschedulers of different types
● But a BPF Map can only have a single type.
● Two classic styles of hooking specific objects to generic ones:

○ Have a void *private blob in the generic struct. e.g. VFS
■ Don’t want to use more pointers

○ Embed the generic object in the specific object. e.g. container_of() stuff.
■ Need the objects to all be the same size

● Add a union to the overall object
○ Each possible thread type gets a union member
○ e.g. One size for every thread struct, regardless of type

22

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Example Thread Struct

struct flux_thread {

struct __flux_thread f;

union {

struct biff_flux_thread biff;

struct doc_flux_thread doc;

};

};

23

the generic part, including f.type

the specific part, based on the
thread’s type

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Different memory management than the kptrs style

Kptrs managed memory style:

● bpf_obj_new(), bpf_obj_drop(), bpf_list_head, bpf_rbtree_add, bpf_rb_node, etc.
● The verifier knows what you’re doing

versus

Blob of RAM, build what you want!

● The overall ARRAY_MAP is a blob of memory, up to us to allocate within it
● The verifier just need to make sure you stay inside the blob

24

https://lwn.net/Articles/924128/

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Pros and Cons: Kptrs style

● Dynamic allocation
● Kernel can enforce invariants on your structures (e.g. safely traverse a tree)
● Verifier needs to know about your types
● Need to associate your spinlocks with your data structures
● Ownership model for memory. Can an object belong to multiple lists/trees yet?
● Need the helpers / kfuncs built into the kernel.

○ Want a new structure? Need a new kernel.
○ Want a new operation on an existing structure? Need a new kernel.

● Can’t touch the managed memory.
○ e.g. atomic_or a bit in a bpf_cpumask from userspace or whatever

25

https://docs.kernel.org/bpf/cpumasks.html

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Pros and Cons: Blob of RAM

● mmappable by userspace
● No guardrails. The verifier protects the kernel, not your code.
● Hard to convince the verifier your code terminates

○ e.g. avl_tree_insert() is very branchy
○ Had to limit the size of the AVL tree and have that overflow list

● Giant blob of RAM? That’s wasted kernel memory.
○ TBD - we think we can fault in the ARRAY_MAP on demand, instead of populating it.

26

Linux Plumbers Conference ‘23

Function pointers?

27

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

There are no function pointers

● How do we get from flux_request_for_cpus() to
roci_request_for_cpus()?

● You’d expect something like “roci->ops.request_for_cpus(nr_cpus)”
● We can’t follow function pointers
● But every subscheduler and thread has an integer type
● Flux library code uses macros that generate switch statements, e.g.

#define __pick_next_task(sched, cpu, ctx) ({
 switch ((sched)->f.type) {
 __gen_cpu_op_cases(__cat_op, _pick_next_task, sched, cpu, ctx)
 };
})

28

Your agent must define this

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Compose your agent.bpf.c from subschedulers

#define __gen_cpu_op_cases(op_type, op, sched, ...)
 case SCHED_TYPE_HOUSEKEEPING:
 op_type(biff, op)(sched, __VA_ARGS__);
 break;
 case SCHED_TYPE_RPC:
 op_type(doc, op)(sched, __VA_ARGS__);
 break;
 case SCHED_TYPE_IDLE:
 op_type(idle, op)(sched, __VA_ARGS__);
 break;
...

#include "third_party/ghost/bpf/bpf/biff_flux.bpf.c"
#include "third_party/ghost/bpf/bpf/doc_flux.bpf.c"
#include "third_party/ghost/bpf/bpf/idle_flux.bpf.c"

29

Similar to function pointers, tell Flux what
code to use for which scheduler

Literally composing your agent from
subscheduler C code

Linux Plumbers Conference ‘23

Future plans
and
Open sourcing

30

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Code Stuff

● https://github.com/google/ghost-userspace
○ flux_header_bpf.h, flux_api.bpf.c, flux_dispatch.bpf.c
○ queue.bpf.h, avl.bpf.h

● Flux is built on top of Ghost.
● The linked list and AVL tree and whatnot can be used independently of Flux
● The model of “build your structures from a blob of memory” can be used in any

BPF program

31

https://github.com/google/ghost-userspace
https://github.com/google/ghost-userspace/blob/main/third_party/bpf/flux_header_bpf.h
https://github.com/google/ghost-userspace/blob/main/third_party/bpf/flux_api.bpf.c
https://github.com/google/ghost-userspace/blob/main/third_party/bpf/flux_dispatch.bpf.c
https://github.com/google/ghost-userspace/blob/main/lib/queue.bpf.h
https://github.com/google/ghost-userspace/blob/main/lib/avl.bpf.h

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Speaking of open source

Although not related directly to Flux or BPF shenanigans:

● “Google is committed to upstreaming our changes”
● “Google's prodkernel cadence follows the LTS stable kernel and is on track to

pickup the 6.x LTS kernel”

32

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Ghost and Sched Ext (SCX)

● Overall vision: build Ghost on top of SCX
● Port Flux to use SCX’s interfaces
● Open question of whether to stick with the “blob of memory” or use kptrs

○ The memory management of threads, cpus, etc. is all handled by the Flux code
● Ideally any scheduler written against Flux-on-Ghost would work on Flux-on-SCX

33

Linux Plumbers Conference ‘23Linux Plumbers Conference ‘23

Thanks!

● Flux: a framework for building schedulers from a hierarchy of subschedulers
○ It’s crazy, and there’s a lot more to cover. Maybe some other time.

● You can build anything out of a blob of memory, even in BPF
○ Pointers -> Integers + ARRAY_MAPs

● You can even do object oriented programming in BPF
○ With some macros and some patience…

34

