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The State of BPF in Android

● Outdated libraries- libbpf, bcc, bpftool
● Custom/curated library for BPF program development
● Limited functionality enabled
○ No CO-RE
○ Few helpers
○ No bpftrace
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Android BPF Goals

● Enable Modern BPF functionality
○ CO-RE
○ Libbpf helpers

● Enable secure vendor access to BPF tracepoints
● Build solid foundation for future use cases
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Android Concepts

● Bionic standard C library
● Each user+application combination has a dedicated UID
● Two Kernel branches for each release
○ Android14-5.15, Android14-6.1

● Older devices can upgrade to new OS with older kernels
● ACK - Android Common Kernel
● GKI - Generic Kernel Image
● KMI - Kernel ABI Stability maintained within kernel branches 

- Android14-5.15, Android14-6.1, etc 
● Trusted file systems - dmverity
● Supports armv7, aarch64, x86, x86_64, riscv64
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Debugging & Development
● Development, Performance, & Test 

Engineers

Android BPF Stakeholders

Release Telemetry & Functionality
● Networking/Tethering/Bandwidth Measurement

● System

● SOC & Device Manufacturers - ‘Vendors’
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Current Android BPF Security Restrictions

● Limit loading capabilities to a single system program
○ (now separate loader for networking)
○ Partially due to previous requirement for 

CAP_SYS_ADMIN
● Loader program is one-shot (exits upon loading programs 

in early init)
● Selinux restrictions
● Control BPF program attach points.
● BPF Program types restricted based on source
● Certain hooks (fentry/fexit) must remain disabled
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Android’s BPFloader
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Android’s File Systems Relevant to BPF
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Supported Program Types

BPF Program Types Networking System Vendor

CGROUP_SKB Y

CGROUP_SOCK Y

CGROUP_SOCK_ADDR Y

KPROBE Y R

PERF_EVENT R

SCHED_ACT Y

SCHED_CLS Y

SOCKET_FILTER Y Y Y

TRACEPOINT Y R

XDP Y

Y = Supported, R = Requested
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Challenges

● Boot time
● Memory overhead
● Kernel/Userspace/BPF object ABI compatibility
● Security
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Possibilities for Enabling CO-RE in Android

● Implement custom Android-Specific library
○ Constant development and maintenance required as new BPF features are 

created
○ Can optimize for our specific use case

● Integrate Libbpf into existing bpfloader
○ Does not solve boot time problem
○ Potential for significant increase in memory usage
○ Potential problems with compatibility between vendor BPF programs and 

system libbpf library version
● Enable BPF programs to use libbpf natively
○ Allows developers and vendors to choose when their programs are loaded
○ Resolves compatibility issue between system libraries and vendor bpf programs
○ Requires additional work to develop access control mechanism

● Other approaches?
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Attach Point Access Control

● Need to verify that tracepoints are part of KMI before attaching
○ KMI varies between kernel branches
○ KMI additions can occur post kernel release (requires allowlist updatability)

● Could be accomplished via allowlist in bpfloader
○ Check bpf program’s attach points prior to loading into kernel
○ Allowlist must be dynamic and maintain support for all kernel versions

● BPF Program/Kernel Module based access control
○ Add hooks into bpf_prog_load() and bpf_prog_attach() functions
○ First BPF program loaded as part of boot
○ Check subsequent bpf progs against running kernel’s KMI
○ Enables the control of ‘native’ libbpf programs
○ Unknown- how to check source of bpf program in kernel?
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Attach Point Access Control
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BPF Subsystem

New Access Control BPF 
Program
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BPFloader Open Questions

● What is the compatibility story for libbpf?
○ Do we need a trampoline library for future API changes?

● What can be done to optimize loading at boot time?
● Can system BTF data be cached by loader process?
○ Refactor libbpf calls to allow passing in BTF object

● Do we need to extend metadata for selinux policy?
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‘Native Libbpf’ Open Questions

● Will this approach pass security review?
● How do we get KMI ACL from kernel
○ Do we create a subset of KMI?

● How to pair BPF object with filesystem source for 
verification?

● What can be done to optimize BTF memory footprint?
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Thank You!
Neill Kapron <nkapron@google.com>


