
Modernizing Android BPF 
& The Android BPF Security Model

Neill Kapron <nkapron@google.com>



The State of BPF in Android

● Outdated libraries- libbpf, bcc, bpftool
● Custom/curated library for BPF program development
● Limited functionality enabled
○ No CO-RE
○ Few helpers
○ No bpftrace

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



Android BPF Goals

● Enable Modern BPF functionality
○ CO-RE
○ Libbpf helpers

● Enable secure vendor access to BPF tracepoints
● Build solid foundation for future use cases

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



Android Concepts

● Bionic standard C library
● Each user+application combination has a dedicated UID
● Two Kernel branches for each release
○ Android14-5.15, Android14-6.1

● Older devices can upgrade to new OS with older kernels
● ACK - Android Common Kernel
● GKI - Generic Kernel Image
● KMI - Kernel ABI Stability maintained within kernel branches 

- Android14-5.15, Android14-6.1, etc 
● Trusted file systems - dmverity
● Supports armv7, aarch64, x86, x86_64, riscv64

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



Debugging & Development
● Development, Performance, & Test 

Engineers

Android BPF Stakeholders

Release Telemetry & Functionality
● Networking/Tethering/Bandwidth Measurement

● System

● SOC & Device Manufacturers - ‘Vendors’

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



Current Android BPF Security Restrictions

● Limit loading capabilities to a single system program
○ (now separate loader for networking)
○ Partially due to previous requirement for 

CAP_SYS_ADMIN
● Loader program is one-shot (exits upon loading programs 

in early init)
● Selinux restrictions
● Control BPF program attach points.
● BPF Program types restricted based on source
● Certain hooks (fentry/fexit) must remain disabled

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



Android’s BPFloader

Map Defs

Map Defs

Map Defs

Networking

System

Vendor

Android
Specific

BPF 
Program

.elf Files on 
Trusted 

Filesystems

BPFloader Application

Program Type 
Allowlist

Android 
Specific BPF 

Library

Userspace

Kernel

Open

Load

Check

Syscall

BPF Subsystem

BPF Loaded Objects

BPF Verifier

Kernel Event 
Sources

Tracepoints

Socket Filters

Perf Events Attach

BPF Maps

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



Android’s File Systems Relevant to BPF

System

BPFloader BPF Library
System BPF 

Programs

Kernel

Exported KMI

Vendor

BPF ProgramsNetwork BPF 
Programs

BPF Library and 
Network BPF 

Programs updatable 
independent from 

System image

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



Supported Program Types

BPF Program Types Networking System Vendor

CGROUP_SKB Y

CGROUP_SOCK Y

CGROUP_SOCK_ADDR Y

KPROBE Y R

PERF_EVENT R

SCHED_ACT Y

SCHED_CLS Y

SOCKET_FILTER Y Y Y

TRACEPOINT Y R

XDP Y

Y = Supported, R = Requested

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



Challenges

● Boot time
● Memory overhead
● Kernel/Userspace/BPF object ABI compatibility
● Security

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



Possibilities for Enabling CO-RE in Android

● Implement custom Android-Specific library
○ Constant development and maintenance required as new BPF features are 

created
○ Can optimize for our specific use case

● Integrate Libbpf into existing bpfloader
○ Does not solve boot time problem
○ Potential for significant increase in memory usage
○ Potential problems with compatibility between vendor BPF programs and 

system libbpf library version
● Enable BPF programs to use libbpf natively
○ Allows developers and vendors to choose when their programs are loaded
○ Resolves compatibility issue between system libraries and vendor bpf programs
○ Requires additional work to develop access control mechanism

● Other approaches?

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



Attach Point Access Control

● Need to verify that tracepoints are part of KMI before attaching
○ KMI varies between kernel branches
○ KMI additions can occur post kernel release (requires allowlist updatability)

● Could be accomplished via allowlist in bpfloader
○ Check bpf program’s attach points prior to loading into kernel
○ Allowlist must be dynamic and maintain support for all kernel versions

● BPF Program/Kernel Module based access control
○ Add hooks into bpf_prog_load() and bpf_prog_attach() functions
○ First BPF program loaded as part of boot
○ Check subsequent bpf progs against running kernel’s KMI
○ Enables the control of ‘native’ libbpf programs
○ Unknown- how to check source of bpf program in kernel?

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



Attach Point Access Control

Map Defs

Map Defs

Map Defs

Networking

System

Vendor

Android
Specific

BPF 
Program

.elf Files on 
Trusted 

Filesystems

BPFloader Application

Program Type 
Allowlist

LIBBPF

Userspace

Kernel

Open

Load

Check

Syscall

Attach Point 
AllowlistCO-RE 

Relocation

BPF Loader Allowlist Approach

BPF Subsystem

BPF Loaded Objects

BPF Verifier

Kernel Event 
Sources

Tracepoints

Socket Filters

Perf Events Attach

BPF Maps

NetBPFload Application

Android 
Specific BPF 

Library Load

Open

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



BPF Subsystem

New Access Control BPF 
Program

Attach Point Access Control
“Native libbpf” + BPF access control program

NetBPFLoad Application

Program Type 
Allowlist

Userspace

Kernel
Syscall

System BPF Application 1 Network

Android Specific
BPF Program .elf Files

Attach Point 
AllowlistBPF Loaded Objects

BPF Verifier

Kernel Event 
Sources

Tracepoints

Socket Filters

Perf Events
Attach

BPF Maps

LIBBPF

Open

Load

CO-RE 
Relocation

Vendor BPF Application 1

LIBBPF

Open

Load

CO-RE 
Relocation

Vendor BPF Application 2

LIBBPF

Open

Load

CO-RE 
Relocation

Android 
Specific BPF 

Library Load

Open

Hook into 
bpf_prog_load()

Hook into 
bpf_prog_attach()

The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



BPFloader Open Questions

● What is the compatibility story for libbpf?
○ Do we need a trampoline library for future API changes?

● What can be done to optimize loading at boot time?
● Can system BTF data be cached by loader process?
○ Refactor libbpf calls to allow passing in BTF object

● Do we need to extend metadata for selinux policy?
The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



‘Native Libbpf’ Open Questions

● Will this approach pass security review?
● How do we get KMI ACL from kernel
○ Do we create a subset of KMI?

● How to pair BPF object with filesystem source for 
verification?

● What can be done to optimize BTF memory footprint?
The State of BPF in Android
Android Concepts

Android BPF Security

Current Implementation

CO-RE + Access Control

Questions



Thank You!
Neill Kapron <nkapron@google.com>


