Extending AF_XDP with
hardware metadata

Stanislav Fomichev, Google, 2023

Problem Statement

Expose NIC hardware offload capabilities to AF_XDP.

Short AF_XDP introduction

e Protocol family to support sending / receiving raw frames from the netdev
o socket(AF_XDP,..)
A modern version of the AF_PACKET, man 7 packet
Plays nicely with the kernel, doesn't take over the interface
Designed to be zerocopy-friendly
| haven't invented it
o Bjorn Topel
o Magnus Karlsson
o and many more

e Documentation/networking/af xdp.rst

AF_XDP vs XDP

e AF_XDP s not to be confused with the XDP
e XDPisonlytosteer the frames into AF_XDP consumer
e XSK==AF_XDP

*in theory, if HW supports n-tuple flow steering, there might be
a case to support XDP-less AF_XDP where AF_XDP would take
over one or more separate HW queues

Userspace

BSD Socket
API

AF_XDP

TCP/IP

—

XDP BPF

1

What about DPDK?

DPDK is more invasive, "kernel bypass"
o DPDK exposes real/raw hardware queue
o DPDK exposes HW offloading capabilities
o AF_XDP abstracts actual queue implementation

e DPDK reimplements existing kernel drivers

o Actually can use AF_XDP to send/receive the frames
DPDK uses spinning mode (need to dedicate processing cores)
DPDK still (slightly) faster than AF_XDP

AF_XDP Rings

TXRing

\

UMEM

Compl Ring

Fill Ring

RX Ring

Send Example

UMEM
X Ring
Comp Ring

Submit TX
packet

— X T

Receive TX
completion

Receive Example

o
1o
1o
< -
N4
N

UMEM

Fill Ring

RX Ring

Receive
packet

— X T

Add RX
descriptor

Receive Steering

struct {
__uint(type, BPF_MAP_TYPE_XSKMAP);
__uint(max_entries, 4);
_type(key, _u32);
__type(value, _u32);
} xsk SEC(".maps");

SEC("xdp")
int rx(struct xdp_md *ctx) {

// filter packets into AF_XDP (xsk) based on something

return bpf_redirect_map(&xsk, ctx->rx_queue_index, XDP_PASS);
}

What's missing?

Now that we're done in the intro, let's discuss what we've added to AF_XDP.

Metadata? Hints? Offloads?

e We need some way to consume and communicate some meta information about the packet
o Wewant to fully utilize NIC HW offload capabilities
e Examples are,on RX

o NIC has verified L4 (TCP/UDP) checksum
o NIC has computed flow hash over the L3 and/or L4
o Nic wants to communicate HW receive timestamp
e OnTX
o Wewanttoask NIC to calculate L4 checksum starting at offset
o Wewanttoreceive HW TX timestamp
Don't have a solid name for this, have been using metadata/hints/offloads

Recent AF_XDP Limitations

e MTU [solved, Linux 6.6]
o 4k page limit
e Scatter Gather [solved, Linux 6.6]
o everything had to go via single linear buffer
e No access to HW offloads on receive [solved, Linux 6.3]

e No access to signal HW offloads on transmit [in progress, hopefully in Linux 6.87]

Receive Side

e Added the ability to read HW offload information from XDP program
e Set of pre-defined BPF kfuncs

o bpf xdp_metadata_rx_timestamp
o bpf_xdp_metadata_rx_hash
e The output of those kfuncs can be put into "metadata” are in the AF_XDP umem chunk
o thelayout of this metadata is flexible and its up to the BPF program and AF_XDP consumer to agree on the
layout

UMEM chunk

Receive Side

Reserved metadata area for RX
timestamp and hash

Fixed offset that has been
agreed upon between BPF
program and AF_XDP
consumer

Frame (ethernet/ip/tcp/etc)

Receive Side Code Sample

SEC("xdp")

int rx(struct xdp_md *ctx) {
bpf_xdp_adjust_meta(-sizeof(u64));
bpf_xdp_metadata_rx_timestamp(ctx, &ctx->data_meta);
return bpf_redirect_map(&xsk, ctx->rx_queue_index, XDP_PASS);

}

// in userspace AF_XDP consumer, when the frame is received
payload = xsk_umem__get_data(...);
__ub4 *timestamp = payload - sizeof(u64);

Transmit Side

e Wedon't have XDP on TX, so the approach is less flexible
o My original attempt was to add some light-weight XDP alternative at TX, but it wasn't well received
e Have afixed metadata layout between the kernel and AF_XDP producer

Transmit Side

The caller indicates that it
intends to use the metadata
via UMEM config.

UMEM chunk

struct xsk_tx_metadata

Frame (ethernet/ip/tcp/etc)

Transmit Side Code Sample

// inuserspace AF_XDP producer
payload = xsk_umem__get_data(...);
struct xsk_tx_metadata *meta = payload - sizeof(struct xsk_tx_metadata);

// request checksum offload

meta->request.flags |= XDP_TXMD_FLAGS_CHECKSUM,;
meta->request.csum_start = sizeof(*eth) + sizeof(*iph);
meta->request.csum_offset = offsetof(struct udphdr, check);

Current Status

RX https://lore.kernel.org/bpf/20230119221536.3349901-1-sdf@google.com/

e Accesstoreceive hardware timestamp
e Accesstoreceive hash

TX https://lore.kernel.org/bpf/20231102225837.1141915-1-sdf@google.com/T/#t

e Accessto transmit completion hardware timestamp
e Support for TCP/UDP transmit checksum offload

Both RX and TX are extensible, so more to come!

https://lore.kernel.org/bpf/20230119221536.3349901-1-sdf@google.com/
https://lore.kernel.org/bpf/20231102225837.1141915-1-sdf@google.com/T/#t

Future Receive Side

e Things that have been flowing through the list so far
e VLAN (Larysa Zaremba)
e RXchecksum (Larysa Zaremba)

o dropped from the latest series to make it easier to push the rest
o hopefully can follow up after VLAN is in

Future Transmit Side

e TXdeparture-time - have patches from Intel's Song Yoong Siang
e TXcrypto offloads

o PSP?
e TSOandUSO

o I've seen on the least concerns about userspace TCP

Questions?

Thank you to all upstream reviewers for feedback and guidance!

