
Extending AF_XDP with
hardware metadata
Stanislav Fomichev, Google, 2023

Problem Statement

Expose NIC hardware offload capabilities to AF_XDP.

Short AF_XDP introduction

● Protocol family to support sending / receiving raw frames from the netdev
○ socket(AF_XDP, ...)

● A modern version of the AF_PACKET, man 7 packet
● Plays nicely with the kernel, doesn't take over the interface
● Designed to be zerocopy-friendly
● I haven't invented it

○ Björn Töpel
○ Magnus Karlsson
○ and many more

● Documentation/networking/af_xdp.rst

AF_XDP vs XDP

● AF_XDP is not to be confused with the XDP

● XDP is only to steer the frames into AF_XDP consumer

● XSK == AF_XDP

*in theory, if HW supports n-tuple flow steering, there might be

a case to support XDP-less AF_XDP where AF_XDP would take

over one or more separate HW queues XDP BPF

AF_XDP TCP/IP

BSD Socket
API

Userspace

What about DPDK?

● DPDK is more invasive, "kernel bypass"
○ DPDK exposes real/raw hardware queue

○ DPDK exposes HW offloading capabilities

○ AF_XDP abstracts actual queue implementation

● DPDK reimplements existing kernel drivers

○ Actually can use AF_XDP to send/receive the frames

● DPDK uses spinning mode (need to dedicate processing cores)

● DPDK still (slightly) faster than AF_XDP

AF_XDP Rings

UMEM

TX Ring

Compl Ring RX Ring

Fill Ring

Send Example

UMEM

TX Ring

Comp Ring

P
K
T

P
K
TSubmit TX

packet

Receive TX
completion

User

Kernel

Receive Example

UMEM

Fill Ring

RX Ring

P
K
T

P
K
TReceive

packet

Add RX
descriptor

User

Kernel

Receive Steering

struct {
 __uint(type, BPF_MAP_TYPE_XSKMAP);
 __uint(max_entries, 4);
 __type(key, __u32);
 __type(value, __u32);
} xsk SEC(".maps");

SEC("xdp")
int rx(struct xdp_md *ctx) {
 // filter packets into AF_XDP (xsk) based on something
 return bpf_redirect_map(&xsk, ctx->rx_queue_index, XDP_PASS);
}

What's missing?

Now that we're done in the intro, let's discuss what we've added to AF_XDP.

Metadata? Hints? Offloads?

● We need some way to consume and communicate some meta information about the packet
○ We want to fully utilize NIC HW offload capabilities

● Examples are, on RX
○ NIC has verified L4 (TCP/UDP) checksum

○ NIC has computed flow hash over the L3 and/or L4

○ Nic wants to communicate HW receive timestamp

● On TX
○ We want to ask NIC to calculate L4 checksum starting at offset

○ We want to receive HW TX timestamp

● Don't have a solid name for this, have been using metadata/hints/offloads

Recent AF_XDP Limitations

● MTU [solved, Linux 6.6]
○ 4k page limit

● Scatter Gather [solved, Linux 6.6]
○ everything had to go via single linear buffer

● No access to HW offloads on receive [solved, Linux 6.3]

● No access to signal HW offloads on transmit [in progress, hopefully in Linux 6.8?]

Receive Side

● Added the ability to read HW offload information from XDP program

● Set of pre-defined BPF kfuncs
○ bpf_xdp_metadata_rx_timestamp

○ bpf_xdp_metadata_rx_hash

● The output of those kfuncs can be put into "metadata" are in the AF_XDP umem chunk
○ the layout of this metadata is flexible and its up to the BPF program and AF_XDP consumer to agree on the

layout

Receive Side

Frame (ethernet/ip/tcp/etc)

UMEM chunk

Reserved metadata area for RX
timestamp and hash

Fixed offset that has been
agreed upon between BPF
program and AF_XDP
consumer

Receive Side Code Sample

SEC("xdp")
int rx(struct xdp_md *ctx) {
 bpf_xdp_adjust_meta(-sizeof(u64));
 bpf_xdp_metadata_rx_timestamp(ctx, &ctx->data_meta);
 return bpf_redirect_map(&xsk, ctx->rx_queue_index, XDP_PASS);
}

// in userspace AF_XDP consumer, when the frame is received
payload = xsk_umem__get_data(...);
__u64 *timestamp = payload - sizeof(u64);

Transmit Side

● We don't have XDP on TX, so the approach is less flexible
○ My original attempt was to add some light-weight XDP alternative at TX, but it wasn't well received

● Have a fixed metadata layout between the kernel and AF_XDP producer

Transmit Side

Frame (ethernet/ip/tcp/etc)

UMEM chunk

struct xsk_tx_metadata

The caller indicates that it
intends to use the metadata
via UMEM config.

Transmit Side Code Sample

// in userspace AF_XDP producer
payload = xsk_umem__get_data(...);
struct xsk_tx_metadata *meta = payload - sizeof(struct xsk_tx_metadata);

// request checksum offload
meta->request.flags |= XDP_TXMD_FLAGS_CHECKSUM;
meta->request.csum_start = sizeof(*eth) + sizeof(*iph);
meta->request.csum_offset = offsetof(struct udphdr, check);

Current Status

RX https://lore.kernel.org/bpf/20230119221536.3349901-1-sdf@google.com/

● Access to receive hardware timestamp
● Access to receive hash

TX https://lore.kernel.org/bpf/20231102225837.1141915-1-sdf@google.com/T/#t

● Access to transmit completion hardware timestamp
● Support for TCP/UDP transmit checksum offload

Both RX and TX are extensible, so more to come!

https://lore.kernel.org/bpf/20230119221536.3349901-1-sdf@google.com/
https://lore.kernel.org/bpf/20231102225837.1141915-1-sdf@google.com/T/#t

Future Receive Side

● Things that have been flowing through the list so far

● VLAN (Larysa Zaremba)

● RX checksum (Larysa Zaremba)
○ dropped from the latest series to make it easier to push the rest

○ hopefully can follow up after VLAN is in

Future Transmit Side

● TX departure-time - have patches from Intel's Song Yoong Siang

● TX crypto offloads
○ PSP?

● TSO and USO
○ I've seen on the least concerns about userspace TCP

Questions?

Thank you to all upstream reviewers for feedback and guidance!

