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Problem Statement

Expose NIC hardware offload capabilities to AF_XDP.



Short AF_XDP introduction

e Protocol family to support sending / receiving raw frames from the netdev
o  socket(AF_XDP,..)
A modern version of the AF_PACKET, man 7 packet
Plays nicely with the kernel, doesn't take over the interface
Designed to be zerocopy-friendly
| haven't invented it
o  Bjorn Topel
o  Magnus Karlsson
o and many more

e Documentation/networking/af xdp.rst



AF_XDP vs XDP

e AF_XDP s not to be confused with the XDP
e XDPisonlytosteer the frames into AF_XDP consumer
e XSK==AF_XDP

*in theory, if HW supports n-tuple flow steering, there might be
a case to support XDP-less AF_XDP where AF_XDP would take
over one or more separate HW queues
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What about DPDK?

DPDK is more invasive, "kernel bypass"
o  DPDK exposes real/raw hardware queue
o  DPDK exposes HW offloading capabilities
o  AF_XDP abstracts actual queue implementation

e DPDK reimplements existing kernel drivers

o Actually can use AF_XDP to send/receive the frames
DPDK uses spinning mode (need to dedicate processing cores)
DPDK still (slightly) faster than AF_XDP
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Receive Steering

struct {
__uint(type, BPF_MAP_TYPE_XSKMAP);
__uint(max_entries, 4);
_type(key, _u32);
__type(value, _u32);
} xsk SEC(".maps");

SEC("xdp")
int rx(struct xdp_md *ctx) {

// filter packets into AF_XDP (xsk) based on something

return bpf_redirect_map(&xsk, ctx->rx_queue_index, XDP_PASS);
}



What's missing?

Now that we're done in the intro, let's discuss what we've added to AF_XDP.



Metadata? Hints? Offloads?

e We need some way to consume and communicate some meta information about the packet
o  Wewant to fully utilize NIC HW offload capabilities
e Examples are,on RX

o NIC has verified L4 (TCP/UDP) checksum
o NIC has computed flow hash over the L3 and/or L4
o Nic wants to communicate HW receive timestamp
e OnTX
o  Wewanttoask NIC to calculate L4 checksum starting at offset
o  Wewanttoreceive HW TX timestamp
Don't have a solid name for this, have been using metadata/hints/offloads



Recent AF_XDP Limitations

e MTU [solved, Linux 6.6]
o 4k page limit
e Scatter Gather [solved, Linux 6.6]
o everything had to go via single linear buffer
e No access to HW offloads on receive [solved, Linux 6.3]

e No access to signal HW offloads on transmit [in progress, hopefully in Linux 6.87]



Receive Side

e Added the ability to read HW offload information from XDP program
e Set of pre-defined BPF kfuncs

o bpf xdp_metadata_rx_timestamp
o bpf_xdp_metadata_rx_hash
e The output of those kfuncs can be put into "metadata” are in the AF_XDP umem chunk
o thelayout of this metadata is flexible and its up to the BPF program and AF_XDP consumer to agree on the
layout
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Receive Side Code Sample

SEC("xdp")

int rx(struct xdp_md *ctx) {
bpf_xdp_adjust_meta(-sizeof(u64));
bpf_xdp_metadata_rx_timestamp(ctx, &ctx->data_meta);
return bpf_redirect_map(&xsk, ctx->rx_queue_index, XDP_PASS);

}

// in userspace AF_XDP consumer, when the frame is received
payload = xsk_umem__get_data(...);
__ub4 *timestamp = payload - sizeof(u64);



Transmit Side

e Wedon't have XDP on TX, so the approach is less flexible
o My original attempt was to add some light-weight XDP alternative at TX, but it wasn't well received
e Have afixed metadata layout between the kernel and AF_XDP producer



Transmit Side
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Transmit Side Code Sample

// inuserspace AF_XDP producer
payload = xsk_umem__get_data(...);
struct xsk_tx_metadata *meta = payload - sizeof(struct xsk_tx_metadata);

// request checksum offload

meta->request.flags |= XDP_TXMD_FLAGS_CHECKSUM,;
meta->request.csum_start = sizeof(*eth) + sizeof(*iph);
meta->request.csum_offset = offsetof(struct udphdr, check);



Current Status

RX https://lore.kernel.org/bpf/20230119221536.3349901-1-sdf@google.com/

e Accesstoreceive hardware timestamp
e Accesstoreceive hash

TX https://lore.kernel.org/bpf/20231102225837.1141915-1-sdf@google.com/T/#t

e Accessto transmit completion hardware timestamp
e Support for TCP/UDP transmit checksum offload

Both RX and TX are extensible, so more to come!


https://lore.kernel.org/bpf/20230119221536.3349901-1-sdf@google.com/
https://lore.kernel.org/bpf/20231102225837.1141915-1-sdf@google.com/T/#t

Future Receive Side

e Things that have been flowing through the list so far
e VLAN (Larysa Zaremba)
e RXchecksum (Larysa Zaremba)

o  dropped from the latest series to make it easier to push the rest
o hopefully can follow up after VLAN is in



Future Transmit Side

e TXdeparture-time - have patches from Intel's Song Yoong Siang
e TXcrypto offloads

o PSP?
e TSOandUSO

o I've seen on the least concerns about userspace TCP



Questions?

Thank you to all upstream reviewers for feedback and guidance!



