
Zero Copy Rx with io_uring
Pavel Begunkov and David Wei



Agenda

01 Problem statement

02 io_uring primer

03 Design

04 Preliminary results

05 Status + future work

06 Questions + discussions



01 Problem statement



Linux networking Rx 
overheads
● Memory and PCIe bandwidth bottlenecks
● Memcpy CPU overheads

01 PROBLEM STATEMENT

Image credit: A Farshin, A Roozbeh, G Q Maguire Jr., D Kostić.
Reexamining Direct Cache Access to Optimize I/O Intensive 
Applications for Multi-hundred-gigabit Networks.



Kernel bypass

01 PROBLEM STATEMENT

● High throughput! Low latency!
● But libraries and applications expect kernel networking stack
● Re-architecting an entire system around kernel bypass is expensive

AF_XDP



● Hybrid solution
○ Standard control plane using kernel networking stack
○ Fast ZC Rx data plane using io_uring

● Two parts:
○ sk_buffs with page frags pointing to userspace pages end up in 

sockets
○ Read from socket using io_uring

01 PROBLEM STATEMENT

Proposal



02 io_uring primer



02 IO_URING PRIMER

io_uring

● Rings shared between kernel and userspace
● Userspace submit requests into Submission Queue (SQ)
● Kernel posts completions into Completion Queue (CQ)
● Kick off work by entering kernel

Image credit: 
https://medium.com/nttlabs/rust-async-with-io-uring-db3fa264
2dd4



02 IO_URING PRIMER

struct io_uring_sqe *sqe;

sqe = io_uring_get_sqe(ring);

io_uring_prep_recv(sqe, sockfd, buf, len, flags);

Note this already moves the SQ tail

Prepare request

Image credit: 
https://medium.com/nttlabs/rust-async-with-io-uring-db3fa264
2dd4



io_uring_submit_and_wait(ring, nr_completions);

02 IO_URING PRIMER

Submit

Image credit: 
https://medium.com/nttlabs/rust-async-with-io-uring-db3fa264
2dd4



02 IO_URING PRIMER

unsigned head;

int count = 0;

io_uring_for_each_cqe(ring, head, cqe) {
// do stuff
count++;

}

io_uring_cq_advance(ring, count);

Process completions

Image credit: 
https://medium.com/nttlabs/rust-async-with-io-uring-db3fa264
2dd4



03 Design



● sk_buffs with page frags pointing to userspace pages end up in 
sockets

● To do this:
○ Fill hardware Rx queue filled with userspace pages

03 DESIGN

Buffer management



03 DESIGN

● Register userspace memory with io_uring
● Pin pages
● struct bio_vec bvec[]

Buffer management:
registration



03 DESIGN

● Page pool evolving to become generic allocator for NICs
● Add ZC page pool “inspired” by page pool
● Thin shim layer + driver changes

Buffer management:
fill HW Rx queue



● Only want payload
○ Header splitting

● Only want our specific application flows 
to hit our ZC hardware Rx queues
○ Flow steering
○ RSS

03 DESIGN

Header splitting +
flow steering



03 DESIGN

● Hardware side fully set up
● Hard IRQs
● Softirq - NAPI poll
● Construct sk_buffs

○ Marked as ZC Rx
○ Page frags → userspace pages

● Goes through networking stack

Kernel network stack



● Add two new shared ringbufs to io_uring:
○ Rx queue
○ Refill queue

● One pair per hardware Rx queue

03 DESIGN

More rings



03 DESIGN

● Submit ZC receive request to io_uring
● Get SQE, prep, and submit

Userspace:
submit request



03 DESIGN

io_uring:
read socket
● Handle ZC receive request
● Read sk_buffs from socket
● No copy - payload already in userspace
● Post one ZC Rx queue entry per skb page frag

struct io_uring_rbuf_cqe {
u32 off;
u32 len;
u16 region;
u8 sock;
u8 flags;

}



03 DESIGN

● Post completion event into CQ
● Tells userspace to go look at a ZC Rx queue

io_uring:
notify userspace



03 DESIGN

● Look at a ZC Rx queue
● Each entry tells user where the payload is relative to the registered 

memory region

struct io_uring_rbuf_cqe {
u32 off;
u32 len;
u16 region;
u8 sock;
u8 flags;

}

Userspace:
read data



03 DESIGN

● Return buffers to ZC page pool via refill queue
● Eventually used by NIC driver to refill hardware Rx queue

struct io_uring_rbuf_rqe {
u32 off;
u32 len;
u16 region;

}

Userspace:
return buffers



04 Preliminary Results



Broadcom BCM57504 NIC @ 25 Gbps link

62 GB DRAM

iperf3 + io_uring + ZC Rx

AMD EPYC 7D13

iperf3

uProf

MemBW

04 PRELIMINARY RESULTS



Broadcom BCM57504 NIC @ 25 Gbps link

62 GB DRAM

iperf3 + io_uring + ZC Rx

Intel Xeon Platinum 8321HC

iperf3

pcm-memory

DDIO is off

MemBW

04 PRELIMINARY RESULTS



05 Status + future work



Status
• V2 RFC is on the mailing list (netdev + io-uring)

• Hacky veth support if you want to play with the API

• Broadcom bnxt hardware support

• Multi-socket

• Copy fallback

05 STATUS + FUTURE WORK



Future work
• Jakub Kicinski’s memory provider API

• Proper test device

﹘ netdevsim?

• Tying flow steering rules with socket

• Dynamic Rx queue reconfiguration

• Support GPU device memory

﹘ Using Google’s TCP devmem proposal

05 STATUS + FUTURE WORK



06 Questions + discussions





07 Appendix



Open questions
• Containers + VMs support?

• TLS + kTLS?

• HugePages?

07 APPENDIX



Copy fallback
• What if we run out of userspace memory allocated for ZC Rx?

• Fill HW Rx queue with kernel pages - as before

• When io_uring ZC receive finds sk_buffs with page frags that are not ZC pages, copy into a page from refill queue

07 APPENDIX



Handling errors
• How much to allocate ahead of time?

• What if it runs out?

• What if header splitting fails?

﹘ Split too little - header malformed

﹘ Split too much - payload included

• What if flow steering fails?

﹘ ZC Rx packet ends up in non-ZC Rx queue

﹘ Non-ZC Rx packet ends up in ZC Rx queue

07 APPENDIX



Integrating ZC Rx well
• NIC → userspace memory is only one hop in a long end to end pipeline

• What if data needs to be modified after ZC Rx? Another copy…

• API need to expose fine control over the placement of data to satisfy constraints e.g. alignment

﹘ Hardware also needs to support this too

07 APPENDIX


