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Kernel bypass

e High throughput! Low latency!
e Butlibraries and applications expect kernel networking stack
e Re-architecting an entire system around kernel bypass is expensive

AF _XDP ?
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e Hybrid solution . )

o Standard control plane using kernel networking stack e

o Fast ZC Rx data plane using io_uring Networking Réde ool
e Two parts: Fage ool

o sk_buffs with page frags pointing to userspace pages end up in 4 [ - ]

sockets
o Read from socket using io_uring
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iO_u ri n g Application

Application puts submission at tail Appiction cansUmestompision

from head to tail

head
tail
. Submission ' Completion
e Rings shared between kernel and userspace Queue Queue
e Userspace submit requests into Submission Queue (SQ) ‘
e Kernel posts completions into Completion Queue (CQ)
e Kick off work by entering kernel head tail

Kernel consumes submission
from head to tail

Kernel puts completion at tail

Image credit:
https://medium.com/nttlabs/rust-async-with-io-uring-db3fa264
2dd4
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Prepare request

struct io_uring_sqe *sqge;
sqge = io_uring_get_sqge(ring);
lo_uring_prep_recv(sqe, sockfd, buf, len, flags);

Note this already moves the SQ tail

Image credit:

https://medium.com/nttlabs/rust-async-with-io-uring-db3fa264
2dd4
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Submit

l0_uring_submit_and_wait(ring, nr_completions);

Image credit:
https://medium.com/nttlabs/rust-async-with-io-uring-db3fa264
2dd4
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Process completions

unsigned head;
int count = O;

io_uring_for_each_cqge(ring, head, cqe) {
// do stuff
count++;

}

l0_uring_cq_advance(ring, count);

Image credit:
https://medium.com/nttlabs/rust-async-with-io-uring-db3fa264
2dd4
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Buffer management

e sk_buffs with page frags pointing to userspace pages end up in
sockets
e To do this:
o Fill hardware Rx queue filled with userspace pages
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Buffer management:
registration

e Register userspace memory with io_uring
e Pinpages
e structbio_vec bvec]]
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Buffer management: ,
fill HW Rx queue bl

v( io_uring W
e Page pool evolving to become generic allocator for NICs L )

LA 4
e Add ZC page pool “inspired” by page pool 7c
e Thin shim layer + driver changes i
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Header splitting +
flow steering

e Only want payload

o Header splitting Kernel Userspace

e Only want our specific application flows
to hit our ZC hardware Rx queues
o Flow steering e N
o RSS Header Payload

Userspace
Memory

Source IP:port
Dest IP:port

Payload Rx
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Kernel network stack

Hardware side fully set up
Hard IRQs
Softirq - NAPI poll
Construct sk_buffs
o Marked as ZC Rx
o Page frags — userspace pages
Goes through networking stack

Socket
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More rings

Add two new shared ringbufs to io_uring:
o Rxqueue
o Refill queue

One pair per hardware Rx queue
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Userspace: -~
submit request

e Submit ZC receive request to io_uring

e GetSQE, prep, and submit
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lo_uring:
read socket

Handle ZC receive request
Read sk_buffs from socket
No copy - payload already in userspace

Post one ZC Rx queue entry per skb page frag

struct io_uring_rbuf_cqge {
u32 off;
u32 len;
ul16 region;
u8 sock;
u8 flags;

Userspace

-

Kernel

Socket }(—)[

io_uring
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ooooooo
PPPPP

Application
./-'x

liburing

lo_uring:
notify userspace

4

e Post completion eventinto CQ [
e Tellsuserspace to golook ata ZC Rx queue
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Application

liburing }
\4 \4

Userspace:
read data

io_uring

4

e LookataZC Rxqueue [
e Each entry tells user where the payload is relative to the registered
memory region

struct io_uring_rbuf_cqe {
u32 off;
u32 len;
ul16 region;
u8 sock;
u8 flags;

| VV
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Application

Data
Plane

[ liburing ]
Userspace:
[
< ‘»[ ig_uring
e Return buffers to ZC page pool via refill queue v
e Eventually used by NIC driver to refill hardware Rx queue o
Page Pool
struct io_uring_rbuf_rge {
u32 off;
u32 len;
ul16 region;
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Status

V2 RFC is on the mailing list (netdev + io-uring)

Hacky veth support if you want to play with the API
Broadcom bnxt hardware support

Multi-socket

Copy fallback
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Future work

Jakub Kicinski’s memory provider API
Proper test device

— netdevsim?
Tying flow steering rules with socket
Dynamic Rx queue reconfiguration
Support GPU device memory

— Using Google’s TCP devmem proposal
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Open questions

- Containers + VMs support?
« TLS + kTLS?

- HugePages?
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Copy fallback

What if we run out of userspace memory allocated for ZC Rx?
Fill HW Rx queue with kernel pages - as before

When io_uring ZC receive finds sk_buffs with page frags that are not ZC pages, copy into a page from refill queue
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Handling errors

How much to allocate ahead of time?
What if it runs out?
What if header splitting fails?
— Split too little - header malformed
— Split too much - payload included
What if flow steering fails?
— ZC Rx packet ends up in non-ZC Rx queue

— Non-ZC Rx packet ends up in ZC Rx queue
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Integrating ZC Rx well

NIC — userspace memory is only one hop in along end to end pipeline
What if data needs to be modified after ZC Rx? Another copy...
APl need to expose fine control over the placement of data to satisfy constraints e.g. alignment

— Hardware also needs to support this too



