
Overflowing the Kernel Stack with BPF
Sai Roop Somaraju <sairoop@vt.edu>
Siddharth Chintamaneni <sidchintamaneni@vt.edu>
Dan Williams <djwillia@vt.edu>

1

mailto:sairoop@vt.edu
mailto:sidchintamaneni@vt.edu
mailto:djwillia@vt.edu

BPF and kernel safety
● BPF programs enable applications to extend the kernel's functionalities at runtime, all

while ensuring stability and security.

● Guaranteed safety is made possible by the verifier engine which statically verifies BPF

code.

2

BPF verifier and BPF runtime
● However, The verifier inherently relies on certain assumptions regarding the runtime

execution environment, and these assumptions are essential to maintain safety.

● One such assumption is the availability of stack space to run the BPF program.

3

● BPF program attachment and its interaction with the stack

● Stack overflow due to BPF program attachment

● Stack overflow due to uncontrolled BPF program nesting

● Discussion on Probable Solutions and Related Questions

● Summary

Agenda

4

● When a verified BPF program executes from an attachment point,

it typically inherits the existing kernel process stack.

● The stack space available to a BPF program is limited to 512 bytes.

● When a helper function or a kfunc is called from within the BPF

program, it extends the same stack further into the kernel.

5

Base Kernel Stack

BPF program interaction with the Kernel Stack

● When a verified BPF program executes from an attachment point,

it typically inherits the existing kernel process stack.

● The stack space available to a BPF program is limited to 512 bytes.

● When a helper function or a kfunc is called from within the BPF

program, it extends the same stack further into the kernel.

6

Base Kernel Stack

BPF program stack

BPF attachment

BPF program interaction with the Kernel Stack

BPF program interaction with the Kernel Stack

7

Base Kernel Stack

BPF program stack

Kernel Stack

Helper Function

BPF attachment

● When a verified BPF program executes from an attachment point,

it typically inherits the existing kernel process stack.

● The stack space available to a BPF program is limited to 512 bytes.

● When a helper function or a kfunc is called from within the BPF

program, it extends the same stack further into the kernel.

● When a verified BPF program executes from an attachment point,

it typically inherits the existing kernel process stack.

● The stack space available to a BPF program is limited to 512 bytes.

● When a helper function or a kfunc is called from within the BPF

program, it extends the same stack further into the kernel.

BPF program interaction with the Kernel Stack

8

Base Kernel Stack

BPF program stack
(max. 512 bytes)

Kernel Stack
Helper Function

BPF attachment

● BPF-to-BPF calls introduce a feature akin to

function calls within BPF programs, leading to

the creation of a new stack frame whenever a

function call is initiated.

BPF-To-BPF calls

9

func_1()

sub rsp,250
…

call subfun_1

9

Base Kernel Stack

BPF program #1 stackBPF attachment

stack growing
downwards

bpf2bpf call

● BPF-to-BPF calls introduce a feature akin to

function calls within BPF programs, leading to

the creation of a new stack frame whenever a

function call is initiated.

● The stack space for each BPF program is still

limited to a maximum of 512 bytes.

BPF-To-BPF calls

10

func_1()

sub rsp,250
call subfun_1

10

Base Kernel Stack

BPF program #1 stackBPF attachment

stack growing
downwards

bpf2bpf call

subfunc_1()

sub rsp,6

bpf2bpf call

func_1()

sub rsp,250
call subfun_1

● Tail calls allows a BPF program to call an

another BPF program and the caller BPF

program will reuse the callee BPF programs

stack frame. Each BPF tail call program is

verified individually.

11

BPF tailcalls

Base Kernel Stack

BPF program #1 stackBPF attachment

stack growing
downwards

bpf2bpf call bpf tailcall

subfunc_1()

sub rsp,6
…

add rsp,6
jumpq func_2a

bpf2bpf call

func_1()

sub rsp,250
call subfun_1

12

BPF tailcalls

bpf2bpf call bpf tailcall

subfunc_1()

sub rsp,6
…

add rsp,6
jumpq func_2a

bpf2bpf call
bpf tailcall

Base Kernel Stack

BPF program #1 stackBPF attachment

● Tail calls enable a BPF program to call another

BPF program, wherein the caller BPF program

reuses the callee BPF program's stack frame.

Each BPF tail call program is verified

individually.

func_1()

sub rsp,250
call subfun_1

● Tail calls enable a BPF program to call another

BPF program, wherein the caller BPF program

reuses the callee BPF program's stack frame.

Each BPF tail call program is verified

individually.

13

BPF tailcalls

Base Kernel Stack

BPF program #1 stackBPF attachment

BPF program #2 stack

bpf2bpf call bpf tailcall

subfunc_1()

sub rsp,6
…

add rsp,6
jumpq func_2a

bpf2bpf call

func_2 ()

sub rsp,250

bpf tailcall

BPF tail calls and BPF-to-BPF calls: BPF checks and limits
● If a tail call program is invoked from a BPF-to-BPF call function, the verifier restricts

each BPF program's stack size to 256 bytes, as opposed to the standard 512 bytes.

● At runtime, the Just-In-Time (JIT) compiler limits the number of tail calls to no more

than 33 tailcalls.

14

15

Base Kernel Stack

BPF program #1
stackBPF

attachment

BPF program #2
stack

stack
growing
downwards

bpf2bpf
call

bpf tailcall

func_2 ()

bpf tailcall

func_1 ()

subfunc_1()

bpf2bpf call

subfunc_2()

bpf2bpf call
bpf tailcall

#1

#2

max.
256 bytes

max.
256 bytes

func_3 ()

Writing a sizeable BPF program of size 8 KB

16

Base Kernel Stack

BPF program #1
stackBPF

attachment

BPF program #2
stack

stack
growing
downwards

bpf2bpf
call

bpf tailcall

func_2 ()

bpf tailcall

BPF program #3
stack

func_1 ()

subfunc_1()

bpf2bpf call

subfunc_2()

bpf2bpf call

func_3 ()

subfunc_3()

bpf2bpf call

bpf tailcall

#1

#2

#3

max.
256 bytes

max.
256 bytes

max.
256 bytes

Writing a sizeable BPF program of size 8 KB

Writing a sizeable BPF program of size 8 KB

17

Base Kernel Stack

BPF program #1
stackBPF

attachment

BPF program #2
stack

stack
growing
downwards

bpf2bpf
call

bpf tailcall

func_2 ()

bpf tailcall

BPF program #3
stack

BPF program #33
stack

func_1 ()

subfunc_1()

bpf2bpf call

subfunc_2()

bpf2bpf call

func_3 ()

subfunc_3()

bpf2bpf call

bpf tailcall

func_33 ()

bpf tailcall
subfunc_32()

#1

#2

#3

#33

max.
256 bytes

max.
256 bytes

max.
256 bytes

max.
256 bytes

Each BPF program of almost ~256 bytes * #33 tail calls

= ~8,448 bytes

Therefore, here the verifier relies on two critical assumptions about the kernel's runtime to

restrict the depth of verified BPF programs :

1. Kernel stack will always have 8 KB of stack space available for a BPF program to run.

2. The total size of the BPF program's kernel stack and the stack for any helper functions

it calls will be less than 8 KB.

BPF verifier assumptions about kernel's stack runtime

18

● BPF program attachment and its interaction with the stack

● Stack overflow due to BPF program attachment

● Stack overflow due to uncontrolled BPF program nesting

● Discussion on Probable Solutions and Related Questions

● Summary

Agenda

19

● At runtime, Given the limited memory footprint of BPF programs and the

controlled state of Kernel stack memory, one can assume that attachments

are consistently innocuous.

● Nonetheless, there have been cases reported in the file systems and

networking communities where a significant amount of kernel stack

memory was used in certain scenarios.

● What if a BPF program is attached on such a kernel stack state?

Is the kernel stack always in a safe state for a BPF attachment?

20

BPF program stack

Kernel Stack

Helper Function

BPF attachment

Base Kernel
Stack

Is base
kernel stack

always
limited in

size??

● To test our assumption, we considered XFS

filesystem and ran a XFS test under certain memory

constrained situation. It created >6KB of base stack.

● System configuration: Intel x86_64 running on a VM

using 1 core, 258 KB memory, 2GB swap memory.

High stack usage using XFS file system

21

● The most deepest functions of choice at the stack's top in XFS runs

were associated with memory management and scheduling tasks,

such as list_lru_add() and update_load_avg().

● BPF dynamic attach mechanisms inheriting the bloated stack:

○ When dynamic tracing is active, kprobe optimizes by employing the

same kernel stack instead of initiating a new interrupt stack.

○ fentry which uses bpf trampoline by design runs on the same kernel

stack using dynamic tracing.

Choosing an attachment function

22

● A BPF program is crafted as previously mentioned,

utilizing 33 tail calls, resulting in more than 8KB of stack

usage.

● Helper functions, which are not traced by either the

verifier or the runtime environment, contribute to further

stack growth on top of the BPF program.

● bpf_get_stackid() helper function is used in our case,

which is called from the top/last tail call bpf program

adding more stack space

Design of the BPF program

23

Overflowing a kernel stack using BPF program

stack growing
downwards

system call functions

XFS stack

Memory management
functions, Scheduler

functions, Block IO
functions, etc.,

Overflowing a kernel stack using BPF program

BPF attach type functions

stack growing
downwards

system call functions

XFS stack

Memory management
functions, Scheduler

functions, Block IO
functions, etc.,

BPF attach type functions

BPF program #1 stack

Overflowing a kernel stack using BPF program

stack growing
downwards

system call functions

XFS stack

Memory management
functions, Scheduler

functions, Block IO
functions, etc.,

BPF program #2 stack

BPF program #3 stack

BPF program #4 stack

BPF program #33 stack

Overflowing a kernel stack using BPF program

BPF attach type functions

BPF program #1 stack

stack growing
downwards

system call functions

XFS stack

Memory management
functions, Scheduler

functions, Block IO
functions, etc.,

BPF program #2 stack

BPF program #3 stack

BPF program #4 stack

BPF program #33 stack

Helper function stack

helper’s kernel stack

Overflowing a kernel stack using BPF program

BPF attach type functions

BPF program #1 stack

stack growing
downwards

system call functions

XFS stack

Memory management
functions, Scheduler

functions, Block IO
functions, etc.,

BPF program #2 stack

BPF program #3 stack

BPF program #4 stack

BPF program #33 stack

Helper function stack

helper’s kernel stack

stack
overflow

● BPF program attachment and its interaction with the stack

● Stack overflow due to BPF program attachment

● Stack overflow due to uncontrolled BPF program nesting

● Discussion on Probable Solutions and Related Questions

● Summary

Agenda

29

● Verifier assumes that helper call stack usage is small.

BPF verifier assumptions about BPF programs nesting

30

base kernel stack

BPF stack

Helper Function
Stack

kernel space

● Verifier assumes that helper call stack usage is small.

● The new desire to nest multiple BPF programs is

violating verifier’s assumption.

BPF verifier assumptions about BPF programs nesting

31

base kernel stack

BPF stack

Helper Function
Stack

kernel space

BPF stack

● Tracepoints/ Kprobes doesn’t allow nesting of multiple

BPF programs.

● Inside trace_call_bpf function kernel checks if there

is any active BPF program already executing on the

same CPU.

● If this condition is true, the corresponding BPF

program will not be executed.

Tracepoints and Kprobe nesting checks for BPF programs

32

unsigned int trace_call_bpf(struct trace_event_call *call,
void *ctx)
{

….
if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {

ret = 0;
goto out;

}
…..

}

https://elixir.bootlin.com/linux/latest/C/ident/trace_call_bpf
https://elixir.bootlin.com/linux/latest/C/ident/trace_event_call

● If a BPF program calls a helper function

What happens if the nesting checks are not implemented?

33

base kernel stack

BPF #1 stack

Helper Function
Stack

kernel space

● If a BPF program calls a helper function

● and another BPF program, attached to that helper

function, calls the same helper, it can create an endless

loop.

What happens if the nesting checks are not implemented?

34

base kernel stack

BPF #1 stack

Helper Function
Stack

kernel space

BPF #2 stack

Helper Function
Stack

● If a BPF program calls a helper function

● and another BPF program, attached to that helper

function, calls the same helper, it can create an endless

loop.

● This loop could cause the BPF program to run

indefinitely, potentially leading to a system crash due to

inheriting the same stack.

What happens if the nesting checks are not implemented?

35

base kernel stack

BPF #1 stack

Helper Function
Stack

kernel space

BPF #2 stack

Helper Function
Stack

stack
overflow

stack size * n

● However, when a BPF program is attached to a helper function or a function invoked

within a helper function, the tracing events related to these interactions may not be

captured.

Limitations of kprobes/ tracepoints approach

36

● BPF Trampoline programs call

__bpf_prog_enter_recur before executing BPF

instructions. In this function, it essentially checks

whether the same BPF program is currently

executing on the CPU.

What about fentry or trampoline nesting checks attachments?

37

static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog,
struct bpf_tramp_run_ctx *run_ctx)

__acquires(RCU)
{

….
if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {

bpf_prog_inc_misses_counter(prog);
return 0;

}
….

}

● More than one BPF programs can run on a same CPU, which results in using the same

stack.

● So by using nesting multiple BPF programs we can overflow the kernel stack.

Limitations of BPF trampoline approach

38

● In this test, an 8KB BPF program stack,

akin to the previous one, is created and

attached via a kprobe on the

__sys_socket() function

● Adding another 8KB BPF stack through

a bpf trampoline to the

bpf_get_stackid() helper function or its

kernel path leads to an overflow of the

x86_64 Linux kernel stack.

Nesting BPF trampoline to overflow stack with other attachments

39

stack
overflow

Demo Video showing the stackoverflow

40

Note: Running Linux version v.6.5.0 using QEMU with DYNAMIC_TRACING enabled.

http://www.youtube.com/watch?v=LJfmKmwS2Oc

Other possible potential attachments used with BPF trampoline

41

stack
overflow

Attached to hook 1 Attached to hook 2

KPROBE Prog Fentry Trampoline Prog

Fentry Trampoline Prog Fentry Trampoline Prog

Tracepoint Fentry Trampoline Prog

Fentry Trampoline Prog KPROBE Prog

1

2

● By using BPF programs attached with trampoline without

relying on any tail calls and BPF-to-BPF functionality one

can overflow the kernel stack.

Overflowing the stack by attaching multiple
trampoline BPF programs

42

base kernel stack

BPF stack #1

kernel space

Helper Function
Stack

BPF stack #2

Helper Function
Stack

BPF stack #3

Helper Function
Stack

BPF stack #n stack
overflow

● BPF program attachment and its interaction with the stack

● Stack overflow due to BPF program attachment

● Stack overflow due to uncontrolled BPF program nesting

● Discussion on Probable Solutions and Related Questions

● Summary

Agenda

43

We came up with the following requirements to mitigate the problems caused by the

implicit verifier assumptions about the stack state during kernel runtime

1. Kernel runtime should ensure and be able to accommodate the stack space required by

the BPF programs to run,

2. and if there is a situation where it cannot allocate enough space for the BPF program, it

should prevent it from running.

Requirements to address the problems we discussed

44

For addressing the issue of stack overflow when attaching a

BPF program to an unknown stack state

Probable Solution to Address P#1 Could be: Stack-Switching

45

base kernel stack

kernel space

For addressing the issue of stack overflow when attaching a

BPF program to an unknown stack state

● The kernel can implement a mechanism to switch a BPF

program to a new stack based on memory requirements.

Probable Solution to Address P#1 Could be: Stack-Switching

46

base kernel stack BPF #1 stack

Helper Function
Stack

kernel space

● The stack switching solution can also address the stack overflow issue that occurs with

nesting.

● A new stack can be created according to the memory needs of nested programs, and the

kernel should enforce a limit on the nesting depth.

Probable Solution to Address P#2 Could be: Stack-Switching
and limit nesting

47

In these two cases there is a chance that a BPF program might not get executed

1. If we request memory for the stack, there might be a chance that there is not enough

space, and the kernel might prevent the BPF program from running.

2. By posing a limit on nesting, a perf BPF program might not get executed.

Points for Discussion on probable solutions

48

Open Question: What happens if a BPF program never gets
executed

49

How does this impact critical BPF program extensions designed for purposes like security?

● Examples could be impacts of not running LSM BPF program/ Seccomp filter.

Open Question: Can an orchestration tool solve our problems?

50

Can BPF orchestrations tools like bpfd alert admins to monitor BPF programs so that we never

run into stack overflow problems?

● BPF program attachment and its interaction with the stack

● Stack overflow due to BPF program attachment

● Stack overflow due to uncontrolled BPF program nesting

● Discussion on Probable Solutions and Related Questions

● Summary

Agenda

51

● It’s is important to upheld the verifiers assumptions about stack during kernel runtime.

● Violations of these assumptions leads to stackoverflow issues.

● We showed two such cases in our presentation.

1. Incorrect assumptions about availability of stack state.

2. Uncontrolled nesting.

● Finally, we raised discussion points on probable solutions to mitigate these issues in the future

and raised open questions.

Summary

52

53

