
Linux Plumbers Conference 2023

Contribution ID: 124 Type: not specified

Make ftrace_regs a common trace interface for
function entry/exit tracing

Tuesday 14 November 2023 09:30 (30 minutes)

We are looking for the new register-set data structure, instead of pt_regs, for function entry/exit trace events.
This is because pt_regs is expected to save all registers including some control registers which are usually
saved when an exception or interrupt happens. However, using ftrace it will not be able to be used on some
architecture. Moreover, for most RISC architecture, saving all registers will take a lot of time and consume a
large amount of stacks. And that is useless on function entry and exit since the registers which we need are
a part of registers which can be used for passing function parameters, or return value and stacks.
Previously, we have only kprobe which uses pt_regs because it is based on the software breakpoint, which is
usually implemented as an exception and saves pt_regs automatically.
Now, we have fprobe for function entry/exit tracing, which is based on ftrace and rethook.
From the tracefs user’s point of view, fprobe is used for fprobe-event. And users are only able to access
function arguments and function return value, and stacks from the fprobe event. Thus we don’t need to use
pt_regs.
The problem is that the eBPF. Since fprobe is used for eBPF to enable multiple kprobe events, which expects the
handler will access registers via pt_regs data structure (but usually only access limited registers for function
arguments ). So it can be updated to ftrace_regs too, but needs another interface.
Once we moved to ftrace_regs, we can start integrating rethook with function-graph tracer. Both implement
the shadow stack but in different ways. If those provide the same interface, we can choose one of them.

Primary author: HIRAMATSU, Masami (Google)

Presenter: HIRAMATSU, Masami (Google)

Session Classification: eBPF & Networking

Track Classification: eBPF & Networking Track


