
LPC23 - Networking & BPF summit
Masami Hiramatsu (Google) <mhiramat@kernel.org>

Use ftrace_regs for
function tracing
Simplify kernel interface

Kernel

Proprietary + Confidential

Masami Hiramatsu

- Co-maintainer of tracing tree.

- Maintainer of the *probes and bootconfig

- And others x86 instruction decoder, perf- probe etc.

- Working for Chrome OS platform

Self Introduction

Proprietary + Confidential

Introduction

This talk will focus on the tracing backend of eBPF,
no eBPF application, nor JIT (but related to JIT)

This talk is about the kernel tracing layer

eBPF progs

eBPF JIT/verifier

eBPF probes

Kernel trace probes

eBPF supports kprobe, kretprobe,
multi-kprobe/kretprobe, fentry/fexit probes.
These are using kprobe, kretprobe, fprobe
and ftrace trampoline directly.
Today’s talk focuses on *probe interfaces.

Current eBPF trace-side layers (for kernel tracing)

rethook
trampoline

fgraph
trampoline

kretprobe ftrace

eBPF
multi-kprobe

eBPF
fentry/feixt

ftrace
trampoline

Software
break

kprobe

fprobe

rethook

fgraph

eBPF
kprobe

eBPF
kretprobe

Proprietary + Confidential

Pt_regs for tracers

Current state of pt_regs users

- kprobe-event, uprobe-event, fprobe
- eBPF - kprobe, kretprobe,

multi-kprobe/kretprobe, uprobe, USDT

And ftrace_regs users

- Ftrace
- Function graph tracer (internally)

Current usage of pt_regs in tracers

rethook
trampoline

fgraph
trampoline

kretprobe

ftrace

eBPF
multi-kprobe

eBPF
fentry/feixt

ftrace
trampoline

Software
break

kprobe
fprobe

rethook

fgraph

eBPF
kprobe

eBPF
kretprobe

Pt_regs means “ptrace registers”
- Introduced for abstracting registers for

ptrace syscall
- Save all registers at interrupt

Used in the interrupt handlers
- And reused by kprobe and kretprobe
- And reused by uprobe
- And reused by fprobe…?

Fprobe doesn’t use any interrupt.
(kretprobe depends on architecture)

What is pt_regs?

PTRACE

Interrupt
handlers

kprobes

uprobes

fprobes 🤔

These involve
interrupts

kretprobes

pt_regs is designed for storing all registers in the
interrupt context (some registers are saved
automatically)

- Some registers can not be saved manually
(e.g. pstate @arm64)

- Most of the registers are not used but take
time to save it.

This means, pt_regs is not correct and takes more
overhead if saved manually.

This is the reason why arm64 doesn’t support
kprobes on ftrace and rethook. (and it should not
support kretprobe too)

Problem of using pt_regs in non interrupt context
Interrupt
(e.g. kprobe, uprobes)

pt_regs
Interrupt
handler

pt_regs?
Register
saving

jump / call
(e.g. kretprobe/ftrace)

There are three tracers for function entry/exit. But interfaces are different.

Function-graph-tracer

- Entry: ftrace_regs
- Exit: fgraph_ret_regs

Fprobe (rethook)
- Entry: (incomplete) pt_regs
- Exit: (incomplete) pt_regs

Kprobe/kretprobe
- Entry: pt_regs
- Exit: (incomplete) pt_regs

Current parameters for kernel tracers

Ftrace_regs is a partial set of pt_regs (most
architectures just wraps pt_regs).

fgraph_ret_regs is a shrunken version of
ftrace_regs, but it only has return value.

Ftrace_regs is a handy option

pt_regs

(all registers)

ftrace_regs

(params+stack)

fgraph_ret_regs
(retval)

>=

ftrace_regs only saves the registers for;
- Function parameters
- Function return values
- Hooking/unwinding function call

(e.g. frame pointer, link register or stack
pointer and instruction pointer)

- (optional) arch implementation dependent

Don’t include state flags, callee-save registers etc.

What is the ftrace_regs?

int function_foo(int param1, long param2, void *param3)
{

…

return ret;
}

[2.794307] function_graph_enter_regs+0x184/0x280
[2.796119] ? fprobe_selftest_target+0x4/0x20
[2.797809] ? test_fprobe_entry+0x91/0x300
[2.799409] ? fprobe_selftest_target+0x4/0x20
[2.801105] ftrace_graph_func+0xcd/0x170
….

Proprietary + Confidential

Kernel tracing changes

There were only eBPF kprobe/kretprobe,
kfunc/kretfunc.

But as you can see, the eBPF kretprobe is working
on incomplete pt_regs.

Previous

eBPF kprobe

kretprobe
trampoline

fgraph
trampoline

kretprobe ftrace

eBPF kretprobe eBPF
fentry/feixt

ftrace
trampoline

Software
break

kprobe

pt_regs

ftrace_regs

Incomplete
pt_regs

fgraph

Fprobe has been introduced for eBPF
multi-kprobe/kretprobe.
But fprobe is based on ftrace and rethook
which provides ftrace_regs and incomplete
pt_regs.

Current

rethook
trampoline

fgraph
trampoline

kretprobe ftrace

eBPF
multi-kprobe

eBPF
fentry/feixt

Software
break

kprobe

fprobe

rethook

fgraph

2 different APIs for the
same feature

pt_regs

ftrace_regs

Incomplete
pt_regs

eBPF
kprobe

eBPF
kretprobe

X86-64 only

Interrupt
base probe

Software
base probe

ftrace
trampoline

(1) Make func-graph use ftrace_regs
(2) Move fprobe on the func-graph
(3) Convert ftrace_regs to incomplete

pt_regs for eBPF

Function entry/exit will use ftrace_regs in
general.
But eBPF still use incomplete pt_regs.

Next (ongoing) plan

Ask to move kretprobe user to fprobe

rethook
trampoline

fgraph
trampoline

kretprobe ftrace

eBPF
multi-kprobe eBPF

fentry/feixt

Software
break

kprobe

fprobe

rethook

fgraph

pt_regs

ftrace_regs

Incomplete
pt_regs

eBPF
kprobe

eBPF
kretprobe

ftrace
trampoline

Convert to
incomplete pt_regs

After moving on to the fgraph, I would like to
ask kretprobe user to fprobe too, because
those have the same function.

For example, eBPF kretprobe also can move
onto the fprobe.
Then we can deprecate the kretprobe
someday.

Next (ongoing) plan

Ask to move kretprobe user to fprobe

rethook
trampoline

fgraph
trampoline

kretprobe ftrace

eBPF
multi-kprobe eBPF

fentry/feixt

Software
break

kprobe

fprobe

rethook

fgraph

pt_regs

ftrace_regs

Incomplete
pt_regs

eBPF
kprobe

eBPF
kretprobe

ftrace
trampoline

Convert to
incomplete pt_regs

However, eBPF is still using the incomplete
pt_regs.

Can eBPF use ftrace_regs for function entry
and exit probes natively?

Incomplete pt_regs exists

fgraph
trampoline

ftrace

eBPF
multi-kprobe eBPF

fentry/feixt

Software
break

kprobe

fprobe

fgraph

pt_regs

ftrace_regs

Incomplete
pt_regs

eBPF
kprobe

eBPF
kretprobe

ftrace
trampoline

Can this use
ftrace_regs

natively?

Convert to
incomplete pt_regs

Can this use
ftrace_regs

natively?

What about introducing eBPF fprobe and
using it in addition to eBPF multi-kprobe?
(because currently eBPF kprobe only supports
function entry/exit)

And can it change to use ftrace_regs natively?

If eBPF “kprobe” tries to probe function BODY,
I would appreciate to help!

Future proposal

eBPF
kprobe

fgraph
trampoline

ftrace

Kprobe
event

eBPF
Fprobe,

multi-kprobe,
kretprobe eBPF

fentry/feixt

Software
break

kprobe

fprobe

fgraph

pt_regs
ftrace_regs

ftrace
trampoline

?

Fprobe on function graph series (RFC v2)
- Link: https://lore.kernel.org/lkml/169945348320.55307.17578137376868880969.stgit@devnote2/T/

Ftrace_regs discussion
- Link: https://lore.kernel.org/all/20230929102115.09c015b9af03e188f1fbb25c@kernel.org/T/

Links:

https://lore.kernel.org/lkml/169945348320.55307.17578137376868880969.stgit@devnote2/T/
https://lore.kernel.org/all/20230929102115.09c015b9af03e188f1fbb25c@kernel.org/T/

Questions?

Thank you!

