BPF LSM + FSVerity for
Binary Authorization

Song Liu <song@kernel.org>
Boris Burkov <boris@bur.io>



mailto:song@kernel.org
mailto:boris@bur.io

Binary Authorization

e Only trusted binaries can perform certain operations

e \Verify the hash: path based verification is not enough

e Flexible
o Various access patterns: for example, only signed bpftrace binary can run signed .bt scripts
o Update allowlist and/or blocklist at runtime

e Small attack surface
o Use asymmetric keys, so no need to protect the allowlist



Existing Solutions

e [IMA (Integrity Measurement Architecture)
o Designed for different use cases
o Not flexible enough

e FSVerity built-in signatures

o Does not protect metadata
o Not flexible enough



FSVerity

e Provides integrity protection, i.e. detection of accidental (non-malicious)
corruption.

e Makes retrieving the file hash extremely efficient.

e Primarily to be used as a tool to support authentication or auditing.

e Enabling verity on a file forces it read-only.
o open(O_RDWR) will fail regardless of the file mode bits



File Checksum

\/

File
Hash

Merkle tree

Block 2

\

H2

Root
Hash



Proposed Framework

FSVerity for file integrity checksums

Secure binary signing service to compute and sign FSVerity digests
xattrs to store FSVerity root hash signatures

BPF _LSM to enforce access control

User space daemon to manage keyrings and BPF_LSM programs



Example BPF Programs

SEC("lsm.s/bprm creds from file")

int BPF PROG(tag binary,
struct linux binprm *bprm,
struct file *f)

task = bpf get current task btf();
bpf get fsverity digest(f, &digest ptr);
bpf get file xattr(f, "user.sig", &sig ptr);
ret = bpf verify pkcs7 signature(&digest ptr,
&sig ptr, trusted keyring);
if (ret)
return O;
bpf task storage get(&allow list, task,
NULL, BPF LOCAL STORAGE GET F CREATE);

return O;

SEC("lsm.s/file open")
int BPF PROG (check file open, struct
file *f)
{
if (!is critical file(f))
return 0;
task =
bpf get current task btf();
bpf task storage get(&allowlist,
task, &value, 0);

return (value == NULL) ;



kfunc bpf get fsverity digest ()

int bpf get fsverity digest(struct file *file,
struct bpf dynptr kern *digest ptr)

e Only available from LSM hooks

o No recursion, no deadlock
e KF TRUSTED ARGS: No pointer walking



kfunc bpf get file xattr ()

int bpf get file xattr(struct file *file, const char *name str,

struct bpf dynptr kern *value ptr);

e Only available from LSM hooks

o No recursion, no deadlock
e KF TRUSTED ARGS: No pointer walking

e Canonly access user. * xattrs
o security.bpf namespace might be required



Summary

e Latest patchset:
https://lore.kernel.org/bpf/20231104001313.3538201-1-song@kernel.orqg/



https://lore.kernel.org/bpf/20231104001313.3538201-1-song@kernel.org/

Thank You!



