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Layer 4 Load Balancer

Distributes network traffic based on information in the transport header across backends

e High Availability
e  Scalability
e Session Persistence

Direct Server Return (DSR)

e Bypasses the LB on the way out
e Tunneling packets on the way in
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Layer 4 Load Balancer

IPVS Implementation

e CPU-heavy
e Bad performance for large number of new connections
e |PVS is a part of the Linux kernel. New features require new kernel.



Layer 4 Load Balancer

BPF XDP Implementation

e XDP runs before expensive memory allocation needed by the network stack.
e Super CPU effective: 3x packets with 7x less CPU
e BPF program release process is independent from kgynel

Katran project was open-sourced
https://github.com/facebookincubator/katran

XDP forwarding plane idle boxes



https://github.com/facebookincubator/katran

Challenges of using XDP in production

e Only one XDP program is allowed per network device, but many programs
needs to be attached. E.g. firewall, load balancing, traffic capture.
e For multiple programs, execution order should be predictable.

e Each program should be able to return XDP_DROP to prevent further
execution.



Multiple XDP programs support

e “XDP Chainer” was built internally to support this functionality

e It defines 20 slots for XDP programs, team must reserve specific slot in
advance.

e XDP Programs attach to hooks inside XDP Chainer with type
BPF PROG TYPE_ EXT.

e Programs always execute in the same order, based on allocated slot number.



XDP Chainer
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Decapsulation

Original implementation was based on the kernel modules

e [Pv4 and IPv6 tunneling interfaces for containers
e ip6_tunnel in “external” mode for the bare metal, supporting IPv4 and IPv6

XDP decapsulation

e Minor performance gains, 5% softirq CPU
e Simplified setup
e Provided decapsulation statistics



XDP Decapsulation Solution

| XDP Solution |
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Issues with XDP approach

e Security. Container that is using XDP program need hosts’ root access to
attach XDP program

e Release cycle. Main XDP program can only be updated after all children are
detached

e If DSR decapsulation done on XDP level and we have 2 containers using the
same DSR VIP, we will have issues on the host with routing packets to the
right container
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Service cross-impact in heavily stacked environment

e Traffic Black-holes

- Alocal VIP or routing table entry created on the host and discards traffic
e Accidental exposure to the internet

- One service setup a VIP that is open to the public

- Another service binds to the [::]:<port_from_the open_range>
e Performance impact

- A service opens multiple UDP sockets

- Acollocated service suffer, udp_lib_Iport_inuse



Network Namespaces

Isolation of the system resources associated with networking

IPv4 and IPv6 protocol stacks.

Some of the network sysctls.

Routing tables.

Its own set of interfaces, including loopback interface with both IPv4 127.0.0.1
and IPv6 [::1] addresses assigned.

Allows multiple service to listen to same port

Enables to use container firewall so is useful even in the case service uses
entire host

Resolve most of the cross-impact problems.



XDP Decapsulation and Network Namespaces

Encapsulated Pkt
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Back to the Kernel modules

Encapsulated Pkt
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Remove XDP decapsulation. Allow
packets to be forwarded into the

network namespace.

Configure decapsulation in the network
namespace using kernel modules: FOU

and IPv4/IPv6 tunnel.




Back to the kernel modules

g
g
) L ' \Jﬁ
)
)
)
)
)
) '\\//’\‘\ ,\///ﬂ\‘ /’/,,777\/_Ay’ - /\ A /m/\/\\/ V\V/ — /\//—
)

The pilot deployment resulted in 8% latency increase under load.



FOU + Tunneling Driver Decapsulation
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TC-BPF Decapsulation

| TC-BPF Solution |

Encapsulated Pkt
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Here, the tc-decap prog is attached by
Container Orchestration and doesn’t
need any additional privileges from user.




TC-BPF Decapsulation - Latency
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Latency issue is resolved.



Tc-decap vs Xdp-decap

e It's runtime is very close to
xdp-decap

It expose the same decap
counter that we had in
xdp-decap



TC-BPF Decapsulation - Easy Isolated Testing
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Hardware Matters

Different vendors expose different behavior

Mellanox provides CHECKSUM_COMPLETE
Broadcom might not pull all headers

Hard to mimic in testing

Some bugs would manifest on specific hardware only



Future work

e Replace veth-device with meta-device to eliminate softirq increase when
service runs in netns.
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