
Evolution of DSR implementation
for containerized applications

Lalit Gupta
Pavel Dubovitsky
Raman Shukhau

Agenda

● Layer-4 Load balancers and Direct Server Return (DSR)
● L4 XDP Implementation
● XDP & Decapsulation
● Challenges for the heavily stacked containerized applications
● Evolution of the DSR support
● Lessons learned
● Q&A

Layer 4 Load Balancer

Distributes network traffic based on information in the transport header across backends

● High Availability
● Scalability
● Session Persistence

Direct Server Return (DSR)

● Bypasses the LB on the way out
● Tunneling packets on the way in

Layer 4 Load Balancer

IPVS Implementation

● CPU-heavy
● Bad performance for large number of new connections
● IPVS is a part of the Linux kernel. New features require new kernel.

Layer 4 Load Balancer
BPF XDP Implementation

● XDP runs before expensive memory allocation needed by the network stack.
● Super CPU effective: 3x packets with 7x less CPU
● BPF program release process is independent from kernel

Katran project was open-sourced
https://github.com/facebookincubator/katran

https://github.com/facebookincubator/katran

Challenges of using XDP in production

● Only one XDP program is allowed per network device, but many programs
needs to be attached. E.g. firewall, load balancing, traffic capture.

● For multiple programs, execution order should be predictable.
● Each program should be able to return XDP_DROP to prevent further

execution.

Multiple XDP programs support

● “XDP Chainer” was built internally to support this functionality
● It defines 20 slots for XDP programs, team must reserve specific slot in

advance.
● XDP Programs attach to hooks inside XDP Chainer with type

BPF_PROG_TYPE_EXT.
● Programs always execute in the same order, based on allocated slot number.

XDP Chainer

Decapsulation

Original implementation was based on the kernel modules

● IPv4 and IPv6 tunneling interfaces for containers
● ip6_tunnel in “external” mode for the bare metal, supporting IPv4 and IPv6

XDP decapsulation

● Minor performance gains, 5% softirq CPU
● Simplified setup
● Provided decapsulation statistics

XDP Decapsulation Solution

eth0

tw-container1

Host

DSR VIP1
Encapsulated Pkt

XDP-Chainer

tw-container2

DSR VIP2

tw-container3

DSR VIP3

xdp-decap

Pkt gets decapsulated at
XDP-Chainer

XDP Solution

containers share hosts’
network namespace

Issues with XDP approach

● Security. Container that is using XDP program need hosts’ root access to
attach XDP program

● Release cycle. Main XDP program can only be updated after all children are
detached

● If DSR decapsulation done on XDP level and we have 2 containers using the
same DSR VIP, we will have issues on the host with routing packets to the
right container

Service cross-impact in heavily stacked environment

● Traffic Black-holes
- A local VIP or routing table entry created on the host and discards traffic

● Accidental exposure to the internet
- One service setup a VIP that is open to the public
- Another service binds to the [::]:<port_from_the_open_range>

● Performance impact
- A service opens multiple UDP sockets
- A collocated service suffer, udp_lib_lport_inuse

Network Namespaces

Isolation of the system resources associated with networking

● IPv4 and IPv6 protocol stacks.
● Some of the network sysctls.
● Routing tables.
● Its own set of interfaces, including loopback interface with both IPv4 127.0.0.1

and IPv6 [::1] addresses assigned.
● Allows multiple service to listen to same port
● Enables to use container firewall so is useful even in the case service uses

entire host

Resolve most of the cross-impact problems.

XDP Decapsulation and Network Namespaces

eth0

tw-container1

veth0

Host

DSR VIP1

Encapsulated Pkt

XDP-Chainer

tw-container2

DSR VIP2

tw-container3

DSR VIP3

veth0 veth0

xdp-prog xdp-prog xdp-prog

VIPs are created in the containers
Pkt gets decapsulated at
XDP-Chainer level and then routed to
the containers

Back to the Kernel modules

eth0

tw-container1

veth0

Host

DSR VIP1

Encapsulated Pkt

tw-container2

DSR VIP2

tw-container3

DSR VIP3

veth0 veth0

Remove XDP decapsulation. Allow
packets to be forwarded into the
network namespace.
Configure decapsulation in the network
namespace using kernel modules: FOU
and IPv4/IPv6 tunnel.

Back to the kernel modules

The pilot deployment resulted in 8% latency increase under load.

FOU + Tunneling Driver Decapsulation

Multiple iterations of the ingress packets through the stack.

TC-BPF Decapsulation

eth0

tw-container1

veth0

Host

DSR VIP1

Encapsulated Pkt

tw-container2

DSR VIP2

tw-container3

DSR VIP3

veth0 veth0

tc-decap tc-decap tc-decap

TC-BPF Solution

Here, the tc-decap prog is attached by
Container Orchestration and doesn’t
need any additional privileges from user.

TC-BPF Decapsulation - Latency

Latency issue is resolved.

Tc-decap vs Xdp-decap

● It’s runtime is very close to
xdp-decap

● It expose the same decap
counter that we had in
xdp-decap

TC-BPF Decapsulation - Easy Isolated Testing

eth0

veth0

Host

Encapsulated
Pkt

tc-encap

tc-decap
 server

 Client

veth0

Pkt

NetNs - Outer

NetNs - Inner

Pkt

DSR

Hardware Matters

Different vendors expose different behavior

● Mellanox provides CHECKSUM_COMPLETE
● Broadcom might not pull all headers
● Hard to mimic in testing
● Some bugs would manifest on specific hardware only

Future work

● Replace veth-device with meta-device to eliminate softirq increase when
service runs in netns.

Q&A

