
Developing a Continuous eBPF Profiler

Looking Beneath the Kernel to
Beyond the Clouds

by Sumera | @sylfrena | @SumoOfShinovar

Agenda

● High Resolution Continuous Profiling
● Userspace and Kernelspace
● Compilers and Runtimes
● Clouds and Kernels
● Low effort Debugging
● Future work

STORY TIME

newbie kernel contributor

 newbie profiler maintainer

TO

ftrace Debugging tools

● ftrace: dynamic tracing

● dmesg: dynamic logging

● flamegraphs: static, infrawide
profile snapshots

About Me
● Junior Software Engineer at Polar Signals

● Open Source Maintainer

○ Parca and Parca-Agent

Sumera Priyadarsini

@sylfrena
@SumoOfShinovar

https://www.parca.dev/
https://twitter.com/SumoOfShinovar
https://github.com/Sylfrena/
https://www.linkedin.com/in/sumera-priyadarsini
https://docs.google.com/file/d/1uast_0fOQkiaW-PfM0H-HmhjVLS2_0Fr/preview

High Resolution Dynamic
Continuous Profiling

High Resolution Profiling

High Resolution Profiling

High Resolution Profiling

parca

eBPF Profilers:
Userspace and Kernelspace

Profilers for the cloud native environment

Discovery
mechanism for

the targets

Discovery
mechanism for

the targets

Mechanism to
collect stack

traces (kernel,
userspace)

Profilers for the cloud native environment

Discovery
mechanism for

the targets

Mechanism to
collect stack

traces (kernel,
userspace)

Profile formats

Profilers for the cloud native environment

Discovery
mechanism for

the targets

Mechanism to
collect stack

traces (kernel,
userspace)

Async
symbolization &

visualization
Profile formats

Profilers for the cloud native environment

Discovery
mechanism for

the targets

Mechanism to
collect stack

traces (kernel,
userspace)

Async
symbolization &

visualization
Profile formats

Profilers for the cloud native environment

Profilers for the cloud native environment

Discovery
mechanism for

the targets

Mechanism to
collect stack

traces

Async
symbolization &

visualization
Profile formats

kernelspace

userpace

Userspace

Profilers for the cloud native environment

Discovery
mechanism for

the targets

Mechanism to
collect stack

traces

Async
symbolization &

visualization
Profile formats

kernelspace

userpace

Userspace

● Discovery of targets
○ pods
○ binaries

● Debuginfo extraction
○ can be uploaded separately

Userspace
● Discovery of targets
● Debuginfo extraction
● Extract Unwind information from DWARF

○ Executable Linkable format - ELF: For obj file, executable program, shared object etc

○ DWARF - widely used debugging format: CIE - Common Information Entry

○ Tools to read ELF and/or DWARF information: readelf, objdump, elfutils, llvm-dwarfdump

Userspace: DWARF Unwind Tables

compact

unwind table

Userspace

● DWARF information is included in (ELF) binaries
● Extract Unwind tables from DWARF info

Userspace: x86 vs Aarch64
x86

Aarch64

Kernelspace

Communicating with Userspace

Hook

eBPF
program

eBPF
Maps

Parca
Agent

Kernel

Userspace
10s

Communicating with Userspace

ftrace Kernelspace:

Walking the Stacks

● What collecting stack traces
involve

○ Kernel stacks
○ Application stacks

● Direction of stack growth
● So what are stack pointers,

where do they come from

From: x86_64 ABI specification

Stacktraces

Userspace

x86

Aarch64

DWARF Unwinding in x86

Unwind table in
x86

DWARF Unwinding in Aarch64

Aarch64

Compilers and Runtimes

Parca Agent Language Support

Compiled Languages

● C
● C++
● Rust
● Go
● and more!

Interpreted Languages

● Python
● Ruby

38

JIT (Just in Time Compiled) Languages

With Perf map or jitdump

● C#
● Erlang
● JVM(with async-profiler)
● Julia
● NodeJS

With or without frame

pointers!

39

Interpreted Languages: Python

 (3.11)

40

Interpreted Languages: Ruby

 (3.0.4)

Parca Agent Language Support: JITed Runtimes and
Stacks

41

JITed Runtimes: Symbolising VSCode

42

ftrace

How Compilers
affect Icicle Graphs:

the cool edition

● Bottom of the Stack in C++

● Correctly Profiling NodeJS

● Am I contained ?

https://github.com/parca-dev/parca-agent/blob/54434c02773a8a8463926f108f86ddff2ff78689/bpf/unwinders/native.bpf.c#L595C3-L604C39
https://www.polarsignals.com/blog/posts/2023/07/12/correctly-profiling-node-js-with-zero-instrumentation
https://github.com/javierhonduco/am-i-contained/

Clouds and Kernels

Kernels in the Cloud

● GKE by Google Cloud
● Graviton by AWS
● Custom kernels
● Custom cloud kernels

…. and others

Kernels versions
we support

Linux Kernel v5.3+ with
BTF

Kernels versions
we prefer and
recommend

Linux Kernel >= v6.4

● Bad kernel bug causing a CPU
lockup in Linux Kernel >= v5.19
&& < v6.1
■ https://github.com/parca-dev/parc

a-agent/issues/1675

● Fix backported to ~stable for 6.1
and 6.3

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1033398
https://github.com/parca-dev/parca-agent/issues/1675
https://github.com/parca-dev/parca-agent/issues/1675
https://lore.kernel.org/bpf/20230118051443.78988-1-alexei.starovoitov@gmail.com/

BUT….

● Most OS Distros don’t update as frequently as upstream

● Custom kernels don’t backport fixes

● Cloud providers largely use v5.xx and <v6.2x kernels

Future Work

Future Roadmap

● Language Support
○ JVM
○ PHP
○ LuaJIT
○ Python

● Improve Memory Usage in the Agent
● More code coverage in Testing:

○ Kernel tests with QEMU
○ Integration tests to ensure correctness
○ Using ASAN and TSAN while developing
○ Snapshot testing of the unwind tables

Resources

● https://www.polarsignals.com/blog/posts/2023/1
0/17/profiling-arm64-with-ebpf-in-parca-agent

● https://www.polarsignals.com/blog/posts/2023/1
0/04/profiling-python-and-ruby-with-ebpf

● https://www.polarsignals.com/blog/posts/2022/11
/29/dwarf-based-stack-walking-using-ebpf

● https://www.polarsignals.com/blog/posts/2023/0
3/28/how-to-read-icicle-and-flame-graphs/

● https://www.polarsignals.com/blog/posts/2022/0
1/13/fantastic-symbols-and-where-to-find-them/

● https://demo.parca.dev

https://www.polarsignals.com/blog/posts/2023/10/17/profiling-arm64-with-ebpf-in-parca-agent
https://www.polarsignals.com/blog/posts/2023/10/17/profiling-arm64-with-ebpf-in-parca-agent
https://www.polarsignals.com/blog/posts/2023/10/04/profiling-python-and-ruby-with-ebpf
https://www.polarsignals.com/blog/posts/2023/10/04/profiling-python-and-ruby-with-ebpf
https://www.polarsignals.com/blog/posts/2022/11/29/dwarf-based-stack-walking-using-ebpf
https://www.polarsignals.com/blog/posts/2022/11/29/dwarf-based-stack-walking-using-ebpf
https://www.polarsignals.com/blog/posts/2023/03/28/how-to-read-icicle-and-flame-graphs/
https://www.polarsignals.com/blog/posts/2023/03/28/how-to-read-icicle-and-flame-graphs/
https://www.polarsignals.com/blog/posts/2022/01/13/fantastic-symbols-and-where-to-find-them/
https://www.polarsignals.com/blog/posts/2022/01/13/fantastic-symbols-and-where-to-find-them/
https://parca.dev

Thank you for listening!

by Sumera | @sylfrena | @SumoOfShinovar

