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newbie kernel contributor 

  newbie profiler maintainer

TO



ftrace Debugging tools

● ftrace: dynamic tracing

● dmesg: dynamic logging

● flamegraphs: static, infrawide 
profile snapshots



About Me
● Junior Software Engineer at Polar Signals

● Open Source Maintainer

○ Parca and Parca-Agent

Sumera Priyadarsini

@sylfrena 
@SumoOfShinovar

https://www.parca.dev/
https://twitter.com/SumoOfShinovar
https://github.com/Sylfrena/
https://www.linkedin.com/in/sumera-priyadarsini
https://docs.google.com/file/d/1uast_0fOQkiaW-PfM0H-HmhjVLS2_0Fr/preview
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eBPF Profilers:
Userspace and Kernelspace



Profilers for the cloud native environment
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Userspace 
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Userspace

● Discovery of targets
○ pods
○ binaries

● Debuginfo extraction
○ can be uploaded separately



Userspace
● Discovery of targets
● Debuginfo extraction
● Extract Unwind information from DWARF 

○ Executable Linkable format - ELF: For obj file, executable program, shared object etc

○ DWARF - widely used debugging format:  CIE - Common Information Entry

○ Tools to read ELF and/or DWARF information: readelf, objdump, elfutils, llvm-dwarfdump



Userspace: DWARF Unwind Tables

compact 

unwind table



Userspace

● DWARF information is included in (ELF) binaries
● Extract Unwind tables  from DWARF info



Userspace: x86 vs Aarch64
x86

Aarch64



Kernelspace



Communicating with Userspace

Hook

eBPF 
program

eBPF 
Maps

Parca 
Agent

Kernel

Userspace
10s



Communicating with Userspace



ftrace Kernelspace:

Walking the Stacks



● What collecting stack traces 
involve

○ Kernel stacks
○ Application stacks

● Direction of stack growth
● So what are stack pointers, 

where do they come from

From: x86_64 ABI specification

Stacktraces 



Userspace

x86

Aarch64



DWARF Unwinding in x86 

Unwind table in
x86



DWARF Unwinding in Aarch64

Aarch64



Compilers and Runtimes



Parca Agent Language Support

Compiled Languages

● C
● C++
● Rust
● Go
● and more!

Interpreted Languages

● Python
● Ruby

38

JIT (Just in Time Compiled) Languages 

With Perf map or jitdump

● C#
● Erlang
● JVM(with async-profiler)
● Julia
● NodeJS

With or without frame 

pointers!
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Interpreted Languages: Python

 (3.11)
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Interpreted Languages: Ruby

 (3.0.4)



Parca Agent Language Support: JITed Runtimes and 
Stacks

41



JITed Runtimes: Symbolising VSCode

42



ftrace

How Compilers 
affect Icicle Graphs:

the cool edition

● Bottom of the Stack in C++ 

● Correctly Profiling NodeJS

● Am I contained ?

https://github.com/parca-dev/parca-agent/blob/54434c02773a8a8463926f108f86ddff2ff78689/bpf/unwinders/native.bpf.c#L595C3-L604C39
https://www.polarsignals.com/blog/posts/2023/07/12/correctly-profiling-node-js-with-zero-instrumentation
https://github.com/javierhonduco/am-i-contained/


Clouds and Kernels



Kernels in the Cloud

● GKE by Google Cloud
● Graviton by AWS
● Custom kernels
● Custom cloud kernels

…. and others



Kernels versions 
we support

Linux Kernel v5.3+ with 
BTF



Kernels versions 
we prefer and 
recommend

Linux Kernel >= v6.4

● Bad kernel bug causing a CPU 
lockup in Linux Kernel >= v5.19 
&& < v6.1
■ https://github.com/parca-dev/parc

a-agent/issues/1675

● Fix backported to ~stable for 6.1 
and 6.3

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1033398
https://github.com/parca-dev/parca-agent/issues/1675
https://github.com/parca-dev/parca-agent/issues/1675
https://lore.kernel.org/bpf/20230118051443.78988-1-alexei.starovoitov@gmail.com/


BUT….

● Most OS Distros don’t update as frequently as upstream

● Custom kernels don’t backport fixes

● Cloud providers largely use v5.xx and <v6.2x kernels



Future Work



Future Roadmap

● Language Support
○ JVM
○ PHP
○ LuaJIT
○ Python

● Improve Memory Usage in the Agent
● More code coverage in Testing:

○ Kernel tests with QEMU
○ Integration tests to ensure correctness
○ Using ASAN and TSAN while developing
○ Snapshot testing of the unwind tables



Resources

● https://www.polarsignals.com/blog/posts/2023/1
0/17/profiling-arm64-with-ebpf-in-parca-agent

● https://www.polarsignals.com/blog/posts/2023/1
0/04/profiling-python-and-ruby-with-ebpf

● https://www.polarsignals.com/blog/posts/2022/11
/29/dwarf-based-stack-walking-using-ebpf

● https://www.polarsignals.com/blog/posts/2023/0
3/28/how-to-read-icicle-and-flame-graphs/ 

● https://www.polarsignals.com/blog/posts/2022/0
1/13/fantastic-symbols-and-where-to-find-them/ 

● https://demo.parca.dev 

https://www.polarsignals.com/blog/posts/2023/10/17/profiling-arm64-with-ebpf-in-parca-agent
https://www.polarsignals.com/blog/posts/2023/10/17/profiling-arm64-with-ebpf-in-parca-agent
https://www.polarsignals.com/blog/posts/2023/10/04/profiling-python-and-ruby-with-ebpf
https://www.polarsignals.com/blog/posts/2023/10/04/profiling-python-and-ruby-with-ebpf
https://www.polarsignals.com/blog/posts/2022/11/29/dwarf-based-stack-walking-using-ebpf
https://www.polarsignals.com/blog/posts/2022/11/29/dwarf-based-stack-walking-using-ebpf
https://www.polarsignals.com/blog/posts/2023/03/28/how-to-read-icicle-and-flame-graphs/
https://www.polarsignals.com/blog/posts/2023/03/28/how-to-read-icicle-and-flame-graphs/
https://www.polarsignals.com/blog/posts/2022/01/13/fantastic-symbols-and-where-to-find-them/
https://www.polarsignals.com/blog/posts/2022/01/13/fantastic-symbols-and-where-to-find-them/
https://parca.dev


Thank you for listening!

by Sumera | @sylfrena | @SumoOfShinovar


