Safe sharing of the network with eBPF

Presenters:

Balasubramanian Madhavan <bmadhavan@meta.com>

Prankur Gupta <prankgup@meta.com>

Linux Plumbers Conference

Richmond, USA Nov 2023 N Meta

mailto:bmadhavan@meta.com
mailto:prankgup@meta.com
https://lpc.events/event/17/sessions/155/#all

This talk

e Network health
o Problems in Datacenter networking space (aka. small RTT flows)
o Receiver Window Tuning
o Various tuning opportunities

e (Custom congestion control algo with eBPF
e Control Plane for BPF Management

o Managing multiple features (10+) utilizing 7 different attach points (sockops, TC etc)

o Challenges and Enhancements

Who we are

Combined & continuous work by transport teams at Meta

e Prashanth Kannan (Host Networking)

e Balasubramanian Madhavan (Host Networking)
e Prankur (Host Networking)

e Neil Spring (Network Analytics)

e Srikanth Sundaresan (Network Analytics)
e Martin Lau (Kernel)

e Lawrence Brakmo

e Abhishek Dhamija (Host Networking)

e Jie Ming (Host Networking)

e Miao Xu (Host Networking)

e Chris Canel (Host Networking)

e Jakub Kicinski (Host Networking)

e Tanuja Ingale

Microbursts

(%2}
=
o
=
o
w
=
=
Q
o
w
o
=

12:38:24.592 12:38:24.594 12:38:24.596 12:38:24.598 12:38:24.600 12:38:24.602 12:38:24.604 :38:24. 12:38:24.608

A 10 MILLISECOND BURST WITH RETRANSMISSIONS

INGRESS = IN RXMIT ® CONNECTIONS

Receiver Window Tuning

e Using “flow control” knob in TCP to tune flows within DC
e ATC program implemented using eBPF to intercept packets at the
egress and rewrites the advertised windows.
e Complements congestion control from the “receiver side” to limit
windows to match BDP.
e Helps bursty services from taking over entire shared rack buffers.
e Improvements:
o Reduced packet discards at all shared devices like host NICs,
rack switches.
o ~50% reduction in switch buffer utilization.

o ~30% improvement in sRTT.

More details on this tuning @ NetworkingAtScale22 talk.

INCAST PROBLEM

« REQUEST
—> RESPONSE

oo
. -—

LEAF NODES

| 4
=
e
B

AGGREGATOR

LEAF NODES

Y

LEAF NODES

https://fb.watch/o98g7So8Nu/

Need for BPF ? Why not just use setsockopt()

Indeed the "window clamp’ is a socket option, changeable with setsockopt().

1) Works only for “passive open”, but not for active open cases.

2) Can be set only during start. Setting in the middle of a connection did not work. Why ?
Kernel bug: ‘rcv_ssthresh™ was not set when "window_clamp™ was changed.
Fixed in Patch: tcp: enable mid stream window clamp

3) Setting the clamp didn’t stick.
Why ? “ Kernel's adaptive receive buffer tuning “
What needs to be done: Disable net.ipv4.tcp_moderate rcvbuf and set SO _RCVBUF
NO. But we don’t need to tune the receive buffer.

Using BPF, provides an independent way to manage just the window.

https://www.spinics.net/lists/netdev/msg762204.html

Other tunings

Problem space

Burst sizes in
large BDP flows

Customize
TCP’s defaults

CC selector

Scope

Long RTT

Short RTT

long RTT

Short RTT
Long RTT
Best effort

Tuning Type

Pacing &
Max Pacing
rate

Connection
timeout

Init congestion
window

Pick a CC

Improvements

Reduction in packet loss at hosts by ~50%
Improvement in service P99 latency by 2x

Improve reliability during timeouts.

Reduction in x-region avg. query latency by
20%

Ease of Operation (ease of experimentation,
upgrades, iterations, bug fixes)

eBPF
program
type

sockops

sockops

sockops

sockops

From:
To:
Subject:
Date:
Message-
ID:

Cc:

Archive-
link:

Introduce BPF STRUCT_OPS

Martin KaFai Lau <kafai-AT-fb.com>
<bpf-AT-vgerkernel.org>

[PATCH bpf-next v4 00/11] Introduce BPF STRUCT_OPS
‘Wed, 8 Jan 2020 16:34:53 -0800
<20200109003453.3854769-1-kafai@fb.com>

Alexei Starovoitov <ast-AT-kernel.org>, Daniel Borkmann <daniel-AT-iogearbox.net>, David Mil
AT-fb.com>, <netdev-AT-vgerkernel.org>
Article

This series introduces BPF STRUCT_OPS. It is an infra to allow
implementing some specific kernel's function pointers in BPF.
The first use case included in this series is to implement

TCP congestion control algorithm in BPF (i.e. implement

struct tcp_congestion_ops in BPF).

There has been attempt to move the TCP CC to the user space

(e.g. CCP in TCP). The common arguments are faster turn around,
get away from long-tail kernel versions in production...etc,
which are legit points.

BPF has been the continuous effort to join both kernel and
userspace upsides together (e.g. XDP to gain the performance
advantage without bypassing the kernel). The recent BPF
advancements (in particular BTF-aware verifier, BPF trampoline,
BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc)
possible in BPF.

The idea is to allow implementing tcp_congestion_ops in bpf.

It allows a faster turnaround for testing algorithm in the
production while leveraging the existing (and continue growing) BPF
feature/framework instead of building one specifically for
userspace TCP CC.

https://lwn.net/Articles/809092/

Why customize congestion control ?

e Ability to add new congestion signals (ECN, different delay
signals)

e Improve existing algorithm (add transient burst handling, ability
to differentiate host & fabric level congestion)

e Add monitoring within CC for better debuggability

e Perform advanced operations like parse custom headers

https://lwn.net/Articles/809092/

A delay based CC within BPF

e Aim: Target delay i.e. Expected delay without congestion
e Signals (1)

o RTT

o One way Queueing Delay

o Backward compatibility with ECN

e Custom loss & congestion handling (3)

BPF_STRUCT NAME (CC_PROGRAM NAME) = {

.pkts_acked = (void*)pkts_acked cc_impl, —_———— > (1) Collect delay samples & determine the the action (CWND inc or dec)
.cong_avoid = (void*)cong_avoid cc_impl, —_———- > React based on the observed delay signal.

.cwnd_event = (void*)cwnd event cc_impl, —_——— > (3)

.set_state = (void*)set_state_cc_impl, —_—————— > (3)

.ssthresh = (void*)ssthresh_cc_impl,

Machines

NetEdit: network eBPF control plane

10+ features that tune transport stack with varying degree of rollout that are loosely coupled with services
Need common observability and error detection infrastructure across features.

(Millions)

Time in Months

Control plane for BPF Management

o Why?

o

O

o

Fast A/B tests

Allows for granular configuration of features

Facilitates rollout and rollback in just minutes

Developer velocity: hide BPF attach-point + kernel version dependencies

Efficiency: process once, re-use across BPF programs with socket cache

Reliability: split user space/kernel lifetime management with always on-BPF dataplane

Easy to adopt latest BPF features such as btf, skel, and sklocal

ECN cb

Inter/Intra rack, DC,
region

Specific Hosts, Jobs,
connections

o)
_ 2,
|
&)
g1k Socket
e
E At o
o .)
o TCP Stack
ks
)
o
»' sockops I
s X
\\
> TCP Congestion
Ops
Struct_ops BPF
A —

-
>

-

select_cca
classifier

Active Est Cb

ECN cb

<
<«

o

"~ Passive Est Cb

setsockopt(TCP_CONGESTION, bpf_ccaxxx)

Server App
o s
18
Socket a
2
<
M =
5
o
(o)
@)
TCP Stack o
i sockops }41
e N
\\
TCP Congestion
Ops b J—
Struct_ops BPF

Observations in Prod

e Long Lived Connections
e Control Plane reboot/downtime

e Sharing of pinned objects

Long lived Connections

Tunings and A-B tests need control over when connections are migrated

Reduce variability - How to test a network change for every connection without forcing all the
services to restart? can different versions of CCA co-exist ?

Sometimes connections lifetime can be in order of days to weeks

tcpliter to rescue - migrate all connections to one version of CCA

Control plane reboot/downtime

e Services will continue to create new connections while control plane is restarting

e Network tunings will be skipped

e tc/iter can help but not always /L

Ex: Settings set during start of the connection like \

ECN negotiation i B Dy
g 10_/—/

e Solution: Always on dataplane*

e Pinning bpf programs/maps/links

6% new conns when Control plane was down conformed to NetEdit features

* Although without control plane policies will be stale but for a small window which is fine.

Sharing/Upgrading Pinned Objects

Updating pinned programs and maps without any downtime
Atomic upgrades not applicable for all attach points

Migrating state from old maps to new maps
What if the map or program structure changed in new version
Access control (multiple writer/reader) for shared maps across processes

Solution: BPF versioning manager

