
Safe sharing of the network with eBPF

Presenters:

Balasubramanian Madhavan <bmadhavan@meta.com>

Prankur Gupta <prankgup@meta.com>

Linux Plumbers Conference

Richmond, USA Nov 2023

mailto:bmadhavan@meta.com
mailto:prankgup@meta.com
https://lpc.events/event/17/sessions/155/#all

This talk
● Network health

○ Problems in Datacenter networking space (aka. small RTT flows)

○ Receiver Window Tuning

○ Various tuning opportunities

● Custom congestion control algo with eBPF

● Control Plane for BPF Management

○ Managing multiple features (10+) utilizing 7 different attach points (sockops, TC etc)

○ Challenges and Enhancements

Who we are
Combined & continuous work by transport teams at Meta

● Prashanth Kannan (Host Networking)

● Balasubramanian Madhavan (Host Networking)

● Prankur (Host Networking)

● Neil Spring (Network Analytics)

● Srikanth Sundaresan (Network Analytics)

● Martin Lau (Kernel)

● Lawrence Brakmo

● Abhishek Dhamija (Host Networking)

● Jie Ming (Host Networking)

● Miao Xu (Host Networking)

● Chris Canel (Host Networking)

● Jakub Kicinski (Host Networking)

● Tanuja Ingale

Microbursts

Receiver Window Tuning
● Using “flow control” knob in TCP to tune flows within DC

● A TC program implemented using eBPF to intercept packets at the

egress and rewrites the advertised windows.

● Complements congestion control from the “receiver side” to limit

windows to match BDP.

● Helps bursty services from taking over entire shared rack buffers.

● Improvements:

○ Reduced packet discards at all shared devices like host NICs,

rack switches.

○ ~50% reduction in switch buffer utilization.

○ ~30% improvement in sRTT.

More details on this tuning @ NetworkingAtScale22 talk.

https://fb.watch/o98g7So8Nu/

Need for BPF ? Why not just use setsockopt()
Indeed the `window clamp` is a socket option, changeable with setsockopt().

1) Works only for “passive open”, but not for active open cases.

2) Can be set only during start. Setting in the middle of a connection did not work. Why ?
Kernel bug: `rcv_ssthresh` was not set when `window_clamp` was changed.
Fixed in Patch: tcp: enable mid stream window clamp

3) Setting the clamp didn’t stick.
Why ? “ Kernel’s adaptive receive buffer tuning “
What needs to be done: Disable net.ipv4.tcp_moderate_rcvbuf and set SO_RCVBUF
NO. But we don’t need to tune the receive buffer.

Using BPF, provides an independent way to manage just the window.

https://www.spinics.net/lists/netdev/msg762204.html

Problem space Scope Tuning Type Improvements eBPF
program
type

Burst sizes in
large BDP flows

Long RTT Pacing &
Max Pacing
rate

Reduction in packet loss at hosts by ~50%
Improvement in service P99 latency by 2x

sockops

Customize
TCP’s defaults

Short RTT Connection
timeout

Improve reliability during timeouts. sockops

long RTT Init congestion
window

Reduction in x-region avg. query latency by
20%

sockops

CC selector Short RTT
Long RTT
Best effort

Pick a CC Ease of Operation (ease of experimentation,
upgrades, iterations, bug fixes)

sockops

Other tunings

Why customize congestion control ?

● Ability to add new congestion signals (ECN, different delay

signals)

● Improve existing algorithm (add transient burst handling, ability

to differentiate host & fabric level congestion)

● Add monitoring within CC for better debuggability

● Perform advanced operations like parse custom headers

https://lwn.net/Articles/809092/

https://lwn.net/Articles/809092/

A delay based CC within BPF
● Aim: Target delay i.e. Expected delay without congestion

● Signals (1)

○ RTT

○ One way Queueing Delay

○ Backward compatibility with ECN

● Custom loss & congestion handling (3)

BPF_STRUCT_NAME(CC_PROGRAM_NAME) = {

………….

.pkts_acked = (void*)pkts_acked_cc_impl, —-----> (1) Collect delay samples & determine the the action (CWND inc or dec)

.cong_avoid = (void*)cong_avoid_cc_impl, —-----> React based on the observed delay signal.

.cwnd_event = (void*)cwnd_event_cc_impl, —-----> (3)

.set_state = (void*)set_state_cc_impl, —-----> (3)

.ssthresh = (void*)ssthresh_cc_impl,

………

};

NetEdit: network eBPF control plane
10+ features that tune transport stack with varying degree of rollout that are loosely coupled with services
Need common observability and error detection infrastructure across features.

Control plane for BPF Management
● Why?

○ Fast A/B tests

○ Allows for granular configuration of features

○ Facilitates rollout and rollback in just minutes

○ Developer velocity: hide BPF attach-point + kernel version dependencies

○ Efficiency: process once, re-use across BPF programs with socket cache

○ Reliability: split user space/kernel lifetime management with always on-BPF dataplane

○ Easy to adopt latest BPF features such as btf, skel, and sklocal

Observations in Prod
● Long Lived Connections

● Control Plane reboot/downtime

● Sharing of pinned objects

Long lived Connections
● Tunings and A-B tests need control over when connections are migrated

● Reduce variability - How to test a network change for every connection without forcing all the
services to restart? can different versions of CCA co-exist ?

● Sometimes connections lifetime can be in order of days to weeks

● tcp/iter to rescue - migrate all connections to one version of CCA

Control plane reboot/downtime
● Services will continue to create new connections while control plane is restarting

● Network tunings will be skipped

● tc/iter can help but not always
Ex: Settings set during start of the connection like
ECN negotiation

● Solution: Always on dataplane*

● Pinning bpf programs/maps/links

 * Although without control plane policies will be stale but for a small window which is fine.

6% new conns when Control plane was down conformed to NetEdit features

Sharing/Upgrading Pinned Objects
● Updating pinned programs and maps without any downtime

Atomic upgrades not applicable for all attach points

● Migrating state from old maps to new maps

● What if the map or program structure changed in new version

● Access control (multiple writer/reader) for shared maps across processes

● Solution: BPF versioning manager

