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Overview

● psABI and Memory Model
● BPF Memory-Model Context
● BPF Instructions
● JITs Must Respect BPF Memory Model
● Validation: GCC Atomic Built-Ins
● Future Work
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psABI and Memory Model
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psABI and Memory Model

● psABIs define:
– Function calling convention
– Register usage
– Stack usage and unwinding
– Type conventions (e.g., size of pointers)
– ELF object file format
– Relocations and linking
– Libraries
– Code model and address space (not a memory model!)
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BPF and psABI

● Hardware (x86, ARMv8, RISC-V, …) provide a 
manual for compilers to generate compatible 
binary code

● BPF has an implicit psABI: JIT source code is 
the source of truth, along with LLVM
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BPF Memory-Model Context
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August 2023 Memory-Model Context

Just use Linux-kernel memory model (LKMM)!!!
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August 2023 Memory-Model Context

Just use Linux-kernel memory model (LKMM)!!!

Other language memory models are a

strict subset of LKMM



9

September 2023: More Context...

● Alexei: “Paul, we need more BPFMM work!”
– “OK, I can find the problem and fix it.”
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September 2023: More Context...

● Alexei: “Paul, we need more BPFMM work!”
– “OK, I can find the problem and fix it.”

We attack your p
roblems

with enthu
siasm!!!
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September 2023: More Context...

● Alexei: “Paul, we need more BPFMM work!”
– “OK, I can find the problem and fix it.”

● Jose Marchesi: “Great to hear that you are 
working on BPFMM!!!”
– Silently: “Ummm… Why???”
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October 2023: Even More Context...

● Need to concurrently 
share data between 
BPF programs and:
– Other BPF programs
– User space programs
– Kernel code
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Why Jose Cares About BPF MM

Language Memory Model
(C, C++, LKMM, ...)

BPF Instruction Set
Has No Memory Model!!!

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT
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Why Jose Cares About BPF MM

Language Memory Model
(C, C++, LKMM, ...)

Instruction-Level BPF
Memory Model

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Exists

Exists

Today!
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Why Jose Cares About BPF MM

Language Memory Model
(C, C++, LKMM, ...)

Instruction-Level BPF
Memory Model

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Exists

Exists

Today!

More work required, but good next step
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Aside on Linux-Kernel Memory Model

● The Linux kernel uses assembly, C, and Rust
● LKMM relies not just on the language memory model, but also 

on strict coding conventions:
– memory-barriers.txt “CONTROL DEPENDENCIES”
– rcu_dereference.rst

● Language MMs do not handle dependencies
– And hence are plagued by OOTA issues
– Therefore, a hardware-level model for BPF instruction set
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Example OOTA, x == y == 0 initially

r1 = x.load(relaxed);

y.store(r1, relaxed);

r1 = y.load(relaxed);

x.store(r1, relaxed);

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1780r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
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Example OOTA, x == y == 0 initially

r1 = x.load(relaxed);

y.store(r1, relaxed);

r1 = y.load(relaxed);

x.store(r1, relaxed);

According to the mathematical core of the C and C++ memory models,
this code can result in x == y == 42!!!

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1780r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
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Example OOTA, x == y == 0 initially

r1 = x.load(relaxed);

y.store(r1, relaxed);

r1 = y.load(relaxed);

x.store(r1, relaxed);

According to the mathematical core of the C and C++ memory models,
this code can result in x == y == 42!!!

But only in theory, not in practice!

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1780r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf
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BPF Instructions
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BPF Instructions

● BPF Atomic Instructions
● BPF Conditional Jump Instructions
● BPF Load instructions
● BPF Memory-Reference Instructions
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BPF Instructions

● BPF Atomic Instructions
● BPF Conditional Jump Instructions
● BPF Load instructions
● BPF Memory-Reference Instructions

Goal:

Make implicit JIT/LLVM memory model

be explicit
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BPF Atomic Instructions

● BPF_XCHG, BPF_CMPXCHG
● BPF_ADD, BPF_OR, BPF_AND, BPF_XOR
● BPF_FETCH with one of the above
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BPF Atomic Instructions 1/3

● BPF_XCHG and BPF_CMPXCHG instructions are fully ordered
● All CPUs and tasks agree that all instructions preceding or following 

a given BPF_XCHG or BPF_CMPXCHG instruction are ordered before 
or after, respectively, that same instruction
– Consistent with Linux-kernel atomic_xchg() and 
atomic_cmpxchg(), respectively

– Alternatively, consistent with the following:
● smp_mb(); atomic_cmpxchg_relaxed(); smp_mb();
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BPF Atomic Instructions 2/3

● BPF_ADD, BPF_OR, BPF_AND, BPF_XOR 
instructions are unordered

● CPUs and JITs can reorder these instructions freely
– Consistent with Linux-kernel atomic_add(), 
atomic_or(), atomic_and(), and 
atomic_xor() APIs
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BPF Atomic Instructions 3/3

● When accompanied by BPF_FETCH, BPF_ADD, BPF_OR, 
BPF_AND, BPF_XOR instructions are fully ordered

● All CPUs and tasks agree that all instructions preceding or 
following a given instruction adorned with BPF_FETCH are 
ordered before or after, respectively, that same instruction
– Consistent with Linux-kernel atomic_fetch_add(), 
atomic_fetch_or(), atomic_fetch_and(), and 
atomic_fetch_xor() APIs
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BPF Conditional Jump Instructions

● Modifiers to BPF_JMP32 and BPF_JMP instructions:
– BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET, BPF_JNE, 
BPF_JSGT, BPF_JSGE, BPF_JLT, BPF_JLE, BPF_JSLT, 
and BPF_JSLE 

● Unconditional jump instructions (BPF_JA, 
BPF_CALL, BPF_EXIT) provide no memory-ordering 
semantics
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BPF Conditional Jump Instructions

● These modifiers to BPF_JMP32 and BPF_JMP 
instructions provide weak ordering:
– BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET, 
BPF_JNE, BPF_JSGT, BPF_JSGE, BPF_JLT, 
BPF_JLE, BPF_JSLT, and BPF_JSLE 

● Too-smart JITs might need to be careful
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BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD or 
BPF_LDX), and 

– There is a store instruction (BPF_ST or BPF_STX) before control flow 
converges, and

– The restrictions outlined in the “CONTROL DEPENDENCIES” section of 
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before control flow 

converges” restriction
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Conditional Jump Example

r1 = READ_ONCE(x);

if (r1) {

    WRITE_ONCE(y, 42);

} 

    r1 = x ll

    r1 = *(u64 *)(r1 + 0)

    if r1 == 0 goto LBB0_2

    r1 = y ll

    r2 = 42

    *(u64 *)(r1 + 0) = r2

LBB0_2:

https://godbolt.org/z/dav34hn56

C
om

pi
le
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Control-Dependency Breakage
r0 = READ_ONCE(*x);

if (r0) {

    WRITE_ONCE(*y, 1);

} else {

    WRITE_ONCE(*y, 1);

}
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Control-Dependency Breakage
r0 = READ_ONCE(*x);

if (r0) {

    WRITE_ONCE(*y, 1);

} else {

    WRITE_ONCE(*y, 1);

}

r0 = READ_ONCE(*x);

WRITE_ONCE(*y, 1);
Compiler

Optimization
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Control-Dependency Breakage
r0 = READ_ONCE(*x);

if (r0) {

    WRITE_ONCE(*y, 1);

} else {

    WRITE_ONCE(*y, 1);

}

r0 = READ_ONCE(*x);

WRITE_ONCE(*y, 1);
Compiler

Optimization

Broken Dependency!!!
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BPF Conditional Jump Instructions

● Different hardware architectures order control 
dependencies in different ways:
– Strongly ordered (x86, s390, …):

● Prior load instructions are ordered before later store 
instructions, courtesy of TSO

– Weakly ordered (ARMv8, PowerPC, …):
● Control dependencies are tracked by hardware
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BPF Conditional Jump Instructions

● What do you mean by “weak”???
– CPU 0’s control dependency is visible to CPU 1, 

and separately to CPU2
– But CPU 0’s control dependency is not necessarily 

visible to code spanning CPU 1 and 2
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Example of Weakness in Play
WRITE_ONCE(*x, 1); r0 = READ_ONCE(*x);

if (r0) {

    // Control dependency

    WRITE_ONCE(*y, 1);

}

r0 = smp_load_acquire(y);

r1 = READ_ONCE(*x);

Both r0 instances and r1 can all be zero!!!
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Example For Converging Control Flow
r1 = READ_ONCE(x);

if (r1)

    WRITE_ONCE(y, 1);

else

    WRITE_ONCE(y, 2);

WRITE_ONCE(z, 1); // Converged here

mov r1,(x)

mov r2,$2

cmov r1,r2,$1

mov (y),r2

mov (z),$1

Control
dependency
constrains
ordering

No ordering constraint!!!JI
T 

us
es

 c
m

ov

Which is why control dependencies extend only to control-flow convergence!!!
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BPF Load Instructions

● BPF_LD and BPF_LDX instructions
– If the value returned by a given load instruction is used to compute the 

address of a later load or store instruction, address-dependency ordering is 
guaranteed

– If the value returned by a given load instruction is used to compute the value 
stored by a given store instruction, data-dependency ordering is guaranteed

– These are used by RCU readers, which must faithfully follow the restrictions 
outlined in Documentation/RCU/rcu_dereference.rst  

● Compilers do not understand address or data dependencies, and happily break them.
● Address and data dependencies are weak, similar to control dependencies
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BPF Load Instructions

● Different hardware architectures order address 
and data dependencies in different ways:
– Strongly ordered (x86, s390, …):

● Prior load instructions are ordered before later load and 
store instructions, courtesy of TSO

– Weakly ordered (ARMv8, PowerPC, …):
● Address and data dependencies are tracked by hardware
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Example of Weakness in Play
WRITE_ONCE(*x, 1); r0 = READ_ONCE(*x);

// Data dependency

WRITE_ONCE(*y, r0);

r0 = smp_load_acquire(y);

r1 = READ_ONCE(*x);

Both r0 instances and r1 can all be zero!!!
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BPF Memory-Reference Instructions

● All CPUs and tasks will see all memory 
references to a single memory location as being 
consistent with a global order

● This is supported by all CPU architectures
– Itanium being the exception that proves the rule
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JITs, Respect BPF Memory Model!!!
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JITs, Respect BPF Memory Model!!!

● Viable strategies:
– Preserve address, control, and data dependencies

● Just generate instructions that match the BPF assembly code most closely
● Put atomic_signal_fence(memory_order_seq_cst) everywhere
● Trace and explicitly preserve dependencies

– Order prior loads before later stores:
● JIT every BPF_LD and BPF_LDX into a target-machine load-acquire instruction sequence
● Place at least one target-machine load-to-store memory-barrier instruction between each BPF 

load/store instruction pair
– atomic_signal_fence(memory_order_acquire) works on x86

– Rely on source-level code having followed Linux-kernel coding standards
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Validation: GCC Atomic Built-Ins
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Validation: GCC Atomic Built-Ins

Note that GCC defined

the built-ins, but this

section uses only

Clang/LLVM
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GCC Atomic Memory Orders

● __ATOMIC_RELAXED: Relaxed ordering
● __ATOMIC_ACQUIRE: Acquire ordering
● __ATOMIC_CONSUME: Treated as acquire
● __ATOMIC_RELEASE: Release ordering
● __ATOMIC_ACQ_REL: Acquire/release ordering
● __ATOMIC_SEQ_CST: Sequential consistency
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No BPF C/C++ Weak Orderings

● __ATOMIC_RELAXED: Relaxed ordering
● __ATOMIC_ACQUIRE, __ATOMIC_CONSUME, 
__ATOMIC_RELEASE, __ATOMIC_ACQ_REL, 
__ATOMIC_SEQ_CST: Full ordering

● Revisit when BPF does acquire and release
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GCC Full Memory Barriers

● __atomic_thread_fence(__ATOMIC_SEQ_CST)
● BPF has none, but it can emulate them:

–  “BPF_ATOMIC | BPF_DW | BPF_STX” with an imm 
field of “BPF_ADD | BPF_FETCH” and a src register 
value of zero

– Or:  “lock *(u32 *)(r2 + 0) += r1”
– Call it bpf_mb() for short
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GCC Atomic Loads

● __atomic_load_n() & __atomic_load()
● Relaxed ordering:

– BPF_LD or BPF_LDX 
● Non-relaxed ordering:

– BPF_LD or BPF_LDX followed by bpf_mb() 

Clang/LLVM does not yet support this
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GCC Atomic Stores

● __atomic_store_n() & __atomic_store()
● Relaxed ordering:

– BPF_ST or BPF_STX 
● Non-relaxed ordering:

– bpf_mb() followed by BPF_ST or BPF_STX 

Clang/LLVM does not yet support this
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GCC Atomic Exchange

● __atomic_exchange_n() & 
__atomic_exchange()

● No matter what ordering:
– “BPF_ATOMIC | BPF_DW | BPF_STX'' with an 

immediate field of “BPF_XCHG | BPF_FETCH”, 
which supplies full ordering 
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GCC Atomic Compare and Exchange

● __atomic_compare_exchange_n() & 
__atomic_compare_exchange()

● No matter what ordering:
– “BPF_ATOMIC | BPF_DW | BPF_STX'' with an 

immediate field of “BPF_CMPXCHG | BPF_FETCH”, 
which supplies full ordering 
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GCC Atomic Fetch-Op

● __atomic_fetch_add(), __atomic_fetch_sub(), 
__atomic_fetch_and(), __atomic_fetch_xor()
– “BPF_ATOMIC | BPF_DW | BPF_STX'' with an immediate field of 

“BPF_XXX | BPF_FETCH”, which supplies full ordering, needed or not
– Where “XXX” is ADD, SUB, AND, and XOR, respectively

● __atomic_fetch_or(),  __atomic_fetch_nand()
– Loop containing “BPF_ATOMIC | BPF_DW | BPF_STX'' with an immediate field of 

“BPF_CMPXCHG | BPF_FETCH”, which supplies full ordering, needed or not
– Use BPF_OR or a combination of BPF_AND with best bit-complement code, respectively

Clang/LLVM does not yet support __atomic_fetch_nand()
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GCC Atomic Op-Fetch

● __atomic_add_fetch(), __atomic_sub_fetch(), 
__atomic_and_fetch(), __atomic_xor_fetch(), 
__atomic_or_fetch(),  __atomic_nand_fetch()
– Implement in the same way as for atomic_fetch_xxx()
– Except that it is necessary to fix up return value to provide the 

after-operation value
– Full ordering is supplied whether it is needed or not

Clang/LLVM does not yet support __atomic_nand_fetch()



55

GCC Miscellaneous Atomics

● __atomic_test_and_set()
– Implement the same as __atomic_exchange()
– Except casting the return value to boolean if 

needed
● __atomic_clear()

– Implement as an __atomic_store() of zero

Clang/LLVM does not yet support these
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GCC Fences

● __atomic_thread_fence()
– Implement as bpf_mb()

● __atomic_signal_fence()
– Implement as the Linux-kernel barrier() macro
– Unless relaxed, in which case this is a no-op

Clang/LLVM does not yet support these
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Future Work
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Future Work

● BPF programs and helpers
– Need per-program definition (default no ordering)

● Different programming languages
– Need ABI for BPF compiler backends

● User-kernel interaction
– Shared-memory interaction as above
– Other ordering provided by queues

● BPF instruction set
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Complication: BPF Helper Ordering?

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
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Complication: BPF Helper Ordering?

Language Memory Model
(C, C++, LKMM, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

C-Language BPF Helper
(LKMM)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
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Complication: BPF Helper Ordering?

Language Memory Model
(C, C++, LKMM, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

C-Language BPF Helper
(LKMM)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

O
rd

er
in

g 
in

 o
r o

ut
?
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Complication: BPF Helper Ordering?

Language Memory Model
(C, C++, LKMM, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

C-Language BPF Helper
(LKMM)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

O
rd

er
in

g 
in

 o
r o

ut
?

No ordering unless specified

by the definition of

the helper in question
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Complication: Multiple Languages?
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Complication: Multiple Languages?

Language Memory Model
(C++, Rust, Go, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Other Language Memory Model
(C++, Rust, Go, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Shared
Memory:
Ordering?
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Complication: Multiple Languages?

Language Memory Model
(C++, Rust, Go, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Other Language Memory Model
(C++, Rust, Go, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Shared
Memory:
Ordering?

LKMM-to-C++11 Cheat Sheet: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p0124r8.html

JITs must re
spect BPF

memory model

Compilers must re
spect

BPF memory model
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Formal-Verification Tools
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Formal-Verification Tools

● Given agreement on the overall approach:
– I model the approach
– I generate English text from the model

● In the meantime, I believe that the informal 
description will suffice for compiler folks



68

BPF Instruction Set

● Possible additions:
– Acquire load (BPF_LDX_ACQ?)
– Release store (BPF_STX_REL?)
– Full barrier

● Possibly one variant with I/O semantics and another variant 
having only normal-memory semantics

● Normal-memory semantics (smp_mb()) is more urgent
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Summary
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Summary: BPF Memory Model

● Instruction-set level memory model
● Validated via GCC atomics
● Future work:

– BPF programs using helpers
– Multiple languages
– User-kernel interaction
– Formal-verification tools
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For More Information
● “Instruction-Level BPF Memory Model”

– https://docs.google.com/document/d/1TaSEfWfLnRUi5KqkavUQyL2tThJXYWHS15qcbxIsFb0/edit?usp=sharing
● “IETF eBPF Instruction Set Specification, v1.0”

– https://www.ietf.org/archive/id/draft-thaler-bpf-isa-00.html 
● “Towards a BPF Memory Model” (2021 BPF & Networking Summit at Linux Plumbers Conference)

– https://lpc.events/event/11/contributions/941/ 
● “”GCC Atomic Compiler Built-Ins”

– https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html 
● Linux kernel source tree: tools/memory-model, Documentation/memory-barriers.txt “CONTROL DEPENDENCIES” 

section, Documentation/RCU/rcu_dereference.rst
● “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

– Chapter 15 (“Advanced Synchronization: Memory Ordering”)
– Appendic C (“Why Memory Barriers?”)

● https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
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Questions?
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Backup



74

Alternatives to Control Dependencies

● Order prior loads against later stores
– Promote loads to acquire loads or add memory-barrier 

instructions
● Wait for weakly ordered CPUs to provide load-to-store 

ordering guarantees for plain load and store instructions
● Follow the language-level practice of ignoring 

dependencies and accept out-of-thin-air values
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