

BPF Memory Model, Two Years On*
The BPF Instruction Set

© 2023 Meta Platforms

Paul E. McKenney, Meta Platforms Kernel Team

Linux Plumbers Conference, BPF & Networking Summit, November 13, 2023

* https://lpc.events/event/11/contributions/941/

2

Overview

● psABI and Memory Model
● BPF Memory-Model Context
● BPF Instructions
● JITs Must Respect BPF Memory Model
● Validation: GCC Atomic Built-Ins
● Future Work

3

psABI and Memory Model

4

psABI and Memory Model

● psABIs define:
– Function calling convention
– Register usage
– Stack usage and unwinding
– Type conventions (e.g., size of pointers)
– ELF object file format
– Relocations and linking
– Libraries
– Code model and address space (not a memory model!)

5

BPF and psABI

● Hardware (x86, ARMv8, RISC-V, …) provide a
manual for compilers to generate compatible
binary code

● BPF has an implicit psABI: JIT source code is
the source of truth, along with LLVM

6

BPF Memory-Model Context

7

August 2023 Memory-Model Context

Just use Linux-kernel memory model (LKMM)!!!

8

August 2023 Memory-Model Context

Just use Linux-kernel memory model (LKMM)!!!

Other language memory models are a

strict subset of LKMM

9

September 2023: More Context...

● Alexei: “Paul, we need more BPFMM work!”
– “OK, I can find the problem and fix it.”

10

September 2023: More Context...

● Alexei: “Paul, we need more BPFMM work!”
– “OK, I can find the problem and fix it.”

We attack your p
roblems

with enthu
siasm!!!

11

September 2023: More Context...

● Alexei: “Paul, we need more BPFMM work!”
– “OK, I can find the problem and fix it.”

● Jose Marchesi: “Great to hear that you are
working on BPFMM!!!”
– Silently: “Ummm… Why???”

12

October 2023: Even More Context...

● Need to concurrently
share data between
BPF programs and:
– Other BPF programs
– User space programs
– Kernel code

13

Why Jose Cares About BPF MM

Language Memory Model
(C, C++, LKMM, ...)

BPF Instruction Set
Has No Memory Model!!!

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

14

Why Jose Cares About BPF MM

Language Memory Model
(C, C++, LKMM, ...)

Instruction-Level BPF
Memory Model

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Exists

Exists

Today!

15

Why Jose Cares About BPF MM

Language Memory Model
(C, C++, LKMM, ...)

Instruction-Level BPF
Memory Model

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Exists

Exists

Today!

More work required, but good next step

16

Aside on Linux-Kernel Memory Model

● The Linux kernel uses assembly, C, and Rust
● LKMM relies not just on the language memory model, but also

on strict coding conventions:
– memory-barriers.txt “CONTROL DEPENDENCIES”
– rcu_dereference.rst

● Language MMs do not handle dependencies
– And hence are plagued by OOTA issues
– Therefore, a hardware-level model for BPF instruction set

17

Example OOTA, x == y == 0 initially

r1 = x.load(relaxed);

y.store(r1, relaxed);

r1 = y.load(relaxed);

x.store(r1, relaxed);

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1780r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf

18

Example OOTA, x == y == 0 initially

r1 = x.load(relaxed);

y.store(r1, relaxed);

r1 = y.load(relaxed);

x.store(r1, relaxed);

According to the mathematical core of the C and C++ memory models,
this code can result in x == y == 42!!!

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1780r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf

19

Example OOTA, x == y == 0 initially

r1 = x.load(relaxed);

y.store(r1, relaxed);

r1 = y.load(relaxed);

x.store(r1, relaxed);

According to the mathematical core of the C and C++ memory models,
this code can result in x == y == 42!!!

But only in theory, not in practice!

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1780r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf

20

BPF Instructions

21

BPF Instructions

● BPF Atomic Instructions
● BPF Conditional Jump Instructions
● BPF Load instructions
● BPF Memory-Reference Instructions

22

BPF Instructions

● BPF Atomic Instructions
● BPF Conditional Jump Instructions
● BPF Load instructions
● BPF Memory-Reference Instructions

Goal:

Make implicit JIT/LLVM memory model

be explicit

23

BPF Atomic Instructions

● BPF_XCHG, BPF_CMPXCHG
● BPF_ADD, BPF_OR, BPF_AND, BPF_XOR
● BPF_FETCH with one of the above

24

BPF Atomic Instructions 1/3

● BPF_XCHG and BPF_CMPXCHG instructions are fully ordered
● All CPUs and tasks agree that all instructions preceding or following

a given BPF_XCHG or BPF_CMPXCHG instruction are ordered before
or after, respectively, that same instruction
– Consistent with Linux-kernel atomic_xchg() and
atomic_cmpxchg(), respectively

– Alternatively, consistent with the following:
● smp_mb(); atomic_cmpxchg_relaxed(); smp_mb();

25

BPF Atomic Instructions 2/3

● BPF_ADD, BPF_OR, BPF_AND, BPF_XOR
instructions are unordered

● CPUs and JITs can reorder these instructions freely
– Consistent with Linux-kernel atomic_add(),
atomic_or(), atomic_and(), and
atomic_xor() APIs

26

BPF Atomic Instructions 3/3

● When accompanied by BPF_FETCH, BPF_ADD, BPF_OR,
BPF_AND, BPF_XOR instructions are fully ordered

● All CPUs and tasks agree that all instructions preceding or
following a given instruction adorned with BPF_FETCH are
ordered before or after, respectively, that same instruction
– Consistent with Linux-kernel atomic_fetch_add(),
atomic_fetch_or(), atomic_fetch_and(), and
atomic_fetch_xor() APIs

27

BPF Conditional Jump Instructions

● Modifiers to BPF_JMP32 and BPF_JMP instructions:
– BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET, BPF_JNE,
BPF_JSGT, BPF_JSGE, BPF_JLT, BPF_JLE, BPF_JSLT,
and BPF_JSLE

● Unconditional jump instructions (BPF_JA,
BPF_CALL, BPF_EXIT) provide no memory-ordering
semantics

28

BPF Conditional Jump Instructions

● These modifiers to BPF_JMP32 and BPF_JMP
instructions provide weak ordering:
– BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET,
BPF_JNE, BPF_JSGT, BPF_JSGE, BPF_JLT,
BPF_JLE, BPF_JSLT, and BPF_JSLE

● Too-smart JITs might need to be careful

29

BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD or
BPF_LDX), and

– There is a store instruction (BPF_ST or BPF_STX) before control flow
converges, and

– The restrictions outlined in the “CONTROL DEPENDENCIES” section of
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before control flow

converges” restriction

30

Conditional Jump Example

r1 = READ_ONCE(x);

if (r1) {

 WRITE_ONCE(y, 42);

}

 r1 = x ll

 r1 = *(u64 *)(r1 + 0)

 if r1 == 0 goto LBB0_2

 r1 = y ll

 r2 = 42

 *(u64 *)(r1 + 0) = r2

LBB0_2:

https://godbolt.org/z/dav34hn56

C
om

pi
le

31

Control-Dependency Breakage
r0 = READ_ONCE(*x);

if (r0) {

 WRITE_ONCE(*y, 1);

} else {

 WRITE_ONCE(*y, 1);

}

32

Control-Dependency Breakage
r0 = READ_ONCE(*x);

if (r0) {

 WRITE_ONCE(*y, 1);

} else {

 WRITE_ONCE(*y, 1);

}

r0 = READ_ONCE(*x);

WRITE_ONCE(*y, 1);
Compiler

Optimization

33

Control-Dependency Breakage
r0 = READ_ONCE(*x);

if (r0) {

 WRITE_ONCE(*y, 1);

} else {

 WRITE_ONCE(*y, 1);

}

r0 = READ_ONCE(*x);

WRITE_ONCE(*y, 1);
Compiler

Optimization

Broken Dependency!!!

34

BPF Conditional Jump Instructions

● Different hardware architectures order control
dependencies in different ways:
– Strongly ordered (x86, s390, …):

● Prior load instructions are ordered before later store
instructions, courtesy of TSO

– Weakly ordered (ARMv8, PowerPC, …):
● Control dependencies are tracked by hardware

35

BPF Conditional Jump Instructions

● What do you mean by “weak”???
– CPU 0’s control dependency is visible to CPU 1,

and separately to CPU2
– But CPU 0’s control dependency is not necessarily

visible to code spanning CPU 1 and 2

36

Example of Weakness in Play
WRITE_ONCE(*x, 1); r0 = READ_ONCE(*x);

if (r0) {

 // Control dependency

 WRITE_ONCE(*y, 1);

}

r0 = smp_load_acquire(y);

r1 = READ_ONCE(*x);

Both r0 instances and r1 can all be zero!!!

37

Example For Converging Control Flow
r1 = READ_ONCE(x);

if (r1)

 WRITE_ONCE(y, 1);

else

 WRITE_ONCE(y, 2);

WRITE_ONCE(z, 1); // Converged here

mov r1,(x)

mov r2,$2

cmov r1,r2,$1

mov (y),r2

mov (z),$1

Control
dependency
constrains
ordering

No ordering constraint!!!JI
T

us
es

 c
m

ov

Which is why control dependencies extend only to control-flow convergence!!!

38

BPF Load Instructions

● BPF_LD and BPF_LDX instructions
– If the value returned by a given load instruction is used to compute the

address of a later load or store instruction, address-dependency ordering is
guaranteed

– If the value returned by a given load instruction is used to compute the value
stored by a given store instruction, data-dependency ordering is guaranteed

– These are used by RCU readers, which must faithfully follow the restrictions
outlined in Documentation/RCU/rcu_dereference.rst

● Compilers do not understand address or data dependencies, and happily break them.
● Address and data dependencies are weak, similar to control dependencies

39

BPF Load Instructions

● Different hardware architectures order address
and data dependencies in different ways:
– Strongly ordered (x86, s390, …):

● Prior load instructions are ordered before later load and
store instructions, courtesy of TSO

– Weakly ordered (ARMv8, PowerPC, …):
● Address and data dependencies are tracked by hardware

40

Example of Weakness in Play
WRITE_ONCE(*x, 1); r0 = READ_ONCE(*x);

// Data dependency

WRITE_ONCE(*y, r0);

r0 = smp_load_acquire(y);

r1 = READ_ONCE(*x);

Both r0 instances and r1 can all be zero!!!

41

BPF Memory-Reference Instructions

● All CPUs and tasks will see all memory
references to a single memory location as being
consistent with a global order

● This is supported by all CPU architectures
– Itanium being the exception that proves the rule

42

JITs, Respect BPF Memory Model!!!

43

JITs, Respect BPF Memory Model!!!

● Viable strategies:
– Preserve address, control, and data dependencies

● Just generate instructions that match the BPF assembly code most closely
● Put atomic_signal_fence(memory_order_seq_cst) everywhere
● Trace and explicitly preserve dependencies

– Order prior loads before later stores:
● JIT every BPF_LD and BPF_LDX into a target-machine load-acquire instruction sequence
● Place at least one target-machine load-to-store memory-barrier instruction between each BPF

load/store instruction pair
– atomic_signal_fence(memory_order_acquire) works on x86

– Rely on source-level code having followed Linux-kernel coding standards

44

Validation: GCC Atomic Built-Ins

45

Validation: GCC Atomic Built-Ins

Note that GCC defined

the built-ins, but this

section uses only

Clang/LLVM

46

GCC Atomic Memory Orders

● __ATOMIC_RELAXED: Relaxed ordering
● __ATOMIC_ACQUIRE: Acquire ordering
● __ATOMIC_CONSUME: Treated as acquire
● __ATOMIC_RELEASE: Release ordering
● __ATOMIC_ACQ_REL: Acquire/release ordering
● __ATOMIC_SEQ_CST: Sequential consistency

47

No BPF C/C++ Weak Orderings

● __ATOMIC_RELAXED: Relaxed ordering
● __ATOMIC_ACQUIRE, __ATOMIC_CONSUME,
__ATOMIC_RELEASE, __ATOMIC_ACQ_REL,
__ATOMIC_SEQ_CST: Full ordering

● Revisit when BPF does acquire and release

48

GCC Full Memory Barriers

● __atomic_thread_fence(__ATOMIC_SEQ_CST)
● BPF has none, but it can emulate them:

– “BPF_ATOMIC | BPF_DW | BPF_STX” with an imm
field of “BPF_ADD | BPF_FETCH” and a src register
value of zero

– Or: “lock *(u32 *)(r2 + 0) += r1”
– Call it bpf_mb() for short

49

GCC Atomic Loads

● __atomic_load_n() & __atomic_load()
● Relaxed ordering:

– BPF_LD or BPF_LDX
● Non-relaxed ordering:

– BPF_LD or BPF_LDX followed by bpf_mb()

Clang/LLVM does not yet support this

50

GCC Atomic Stores

● __atomic_store_n() & __atomic_store()
● Relaxed ordering:

– BPF_ST or BPF_STX
● Non-relaxed ordering:

– bpf_mb() followed by BPF_ST or BPF_STX

Clang/LLVM does not yet support this

51

GCC Atomic Exchange

● __atomic_exchange_n() &
__atomic_exchange()

● No matter what ordering:
– “BPF_ATOMIC | BPF_DW | BPF_STX'' with an

immediate field of “BPF_XCHG | BPF_FETCH”,
which supplies full ordering

52

GCC Atomic Compare and Exchange

● __atomic_compare_exchange_n() &
__atomic_compare_exchange()

● No matter what ordering:
– “BPF_ATOMIC | BPF_DW | BPF_STX'' with an

immediate field of “BPF_CMPXCHG | BPF_FETCH”,
which supplies full ordering

53

GCC Atomic Fetch-Op

● __atomic_fetch_add(), __atomic_fetch_sub(),
__atomic_fetch_and(), __atomic_fetch_xor()
– “BPF_ATOMIC | BPF_DW | BPF_STX'' with an immediate field of

“BPF_XXX | BPF_FETCH”, which supplies full ordering, needed or not
– Where “XXX” is ADD, SUB, AND, and XOR, respectively

● __atomic_fetch_or(), __atomic_fetch_nand()
– Loop containing “BPF_ATOMIC | BPF_DW | BPF_STX'' with an immediate field of

“BPF_CMPXCHG | BPF_FETCH”, which supplies full ordering, needed or not
– Use BPF_OR or a combination of BPF_AND with best bit-complement code, respectively

Clang/LLVM does not yet support __atomic_fetch_nand()

54

GCC Atomic Op-Fetch

● __atomic_add_fetch(), __atomic_sub_fetch(),
__atomic_and_fetch(), __atomic_xor_fetch(),
__atomic_or_fetch(), __atomic_nand_fetch()
– Implement in the same way as for atomic_fetch_xxx()
– Except that it is necessary to fix up return value to provide the

after-operation value
– Full ordering is supplied whether it is needed or not

Clang/LLVM does not yet support __atomic_nand_fetch()

55

GCC Miscellaneous Atomics

● __atomic_test_and_set()
– Implement the same as __atomic_exchange()
– Except casting the return value to boolean if

needed
● __atomic_clear()

– Implement as an __atomic_store() of zero

Clang/LLVM does not yet support these

56

GCC Fences

● __atomic_thread_fence()
– Implement as bpf_mb()

● __atomic_signal_fence()
– Implement as the Linux-kernel barrier() macro
– Unless relaxed, in which case this is a no-op

Clang/LLVM does not yet support these

57

Future Work

58

Future Work

● BPF programs and helpers
– Need per-program definition (default no ordering)

● Different programming languages
– Need ABI for BPF compiler backends

● User-kernel interaction
– Shared-memory interaction as above
– Other ordering provided by queues

● BPF instruction set

59

Complication: BPF Helper Ordering?

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

60

Complication: BPF Helper Ordering?

Language Memory Model
(C, C++, LKMM, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

C-Language BPF Helper
(LKMM)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

61

Complication: BPF Helper Ordering?

Language Memory Model
(C, C++, LKMM, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

C-Language BPF Helper
(LKMM)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

O
rd

er
in

g
in

 o
r o

ut
?

62

Complication: BPF Helper Ordering?

Language Memory Model
(C, C++, LKMM, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

C-Language BPF Helper
(LKMM)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

O
rd

er
in

g
in

 o
r o

ut
?

No ordering unless specified

by the definition of

the helper in question

63

Complication: Multiple Languages?

64

Complication: Multiple Languages?

Language Memory Model
(C++, Rust, Go, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Other Language Memory Model
(C++, Rust, Go, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Shared
Memory:
Ordering?

65

Complication: Multiple Languages?

Language Memory Model
(C++, Rust, Go, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Other Language Memory Model
(C++, Rust, Go, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Shared
Memory:
Ordering?

LKMM-to-C++11 Cheat Sheet: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p0124r8.html

JITs must re
spect BPF

memory model

Compilers must re
spect

BPF memory model

66

Formal-Verification Tools

67

Formal-Verification Tools

● Given agreement on the overall approach:
– I model the approach
– I generate English text from the model

● In the meantime, I believe that the informal
description will suffice for compiler folks

68

BPF Instruction Set

● Possible additions:
– Acquire load (BPF_LDX_ACQ?)
– Release store (BPF_STX_REL?)
– Full barrier

● Possibly one variant with I/O semantics and another variant
having only normal-memory semantics

● Normal-memory semantics (smp_mb()) is more urgent

69

Summary

70

Summary: BPF Memory Model

● Instruction-set level memory model
● Validated via GCC atomics
● Future work:

– BPF programs using helpers
– Multiple languages
– User-kernel interaction
– Formal-verification tools

71

For More Information
● “Instruction-Level BPF Memory Model”

– https://docs.google.com/document/d/1TaSEfWfLnRUi5KqkavUQyL2tThJXYWHS15qcbxIsFb0/edit?usp=sharing
● “IETF eBPF Instruction Set Specification, v1.0”

– https://www.ietf.org/archive/id/draft-thaler-bpf-isa-00.html
● “Towards a BPF Memory Model” (2021 BPF & Networking Summit at Linux Plumbers Conference)

– https://lpc.events/event/11/contributions/941/
● “”GCC Atomic Compiler Built-Ins”

– https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
● Linux kernel source tree: tools/memory-model, Documentation/memory-barriers.txt “CONTROL DEPENDENCIES”

section, Documentation/RCU/rcu_dereference.rst
● “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

– Chapter 15 (“Advanced Synchronization: Memory Ordering”)
– Appendic C (“Why Memory Barriers?”)

● https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

72

Questions?

73

Backup

74

Alternatives to Control Dependencies

● Order prior loads against later stores
– Promote loads to acquire loads or add memory-barrier

instructions
● Wait for weakly ordered CPUs to provide load-to-store

ordering guarantees for plain load and store instructions
● Follow the language-level practice of ignoring

dependencies and accept out-of-thin-air values

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

