
BPF: Let's see more LSMs
KP Singh

Implementing an in-tree LSM with
BPF

SafeSetID LSM

● Gate UID transitions with a global allow list

● Simple, but can be simpler, more flexible

● So, how did it go?

Policy Input: Strings and Maps

 “<UID_from>:<UID_to>” or “<GID_from>:<GID_to>”

● Implemented using a BPF_MAP_TYPE_HASH_OF_MAPS

● 2 maps for UID and GID policies

○ UID -> [set of allowed UIDs]
○ GID -> [set of allowed GIDs]

Any issues?
● A dynamically sized inner array would have been nice

● Static initialization of the array map

● Tried BPF_F_NO_PREALLOC and got an EINVAL

● Found this patch

● Used BPF_F_INNER_MAP, works.

● However bpftool dump map <id> shows a bunch of zeroed
entries

○ Maybe the iteration causes the allocation?

https://patchwork.kernel.org/project/netdevbpf/patch/48cbc4e24968da275d13bd8797fe32986938f398.1602252399.git.daniel@iogearbox.net/#23677127

Implementing LSM Hooks
● Surprisingly easy

● Some wins:

○ force_signal could be easily replaced with
bpf_send_signal

○ LSM hook logic could largely be kept the same
○ Custom logging FTW!

● And then, refcounting:

○ Needed to grab and drop a reference to group_info

__bpf_kfunc struct group_info` *bpf_group_info_acquire(struct
group_info *gi)
{
 return get_group_info(gi);
}

__bpf_kfunc void bpf_group_info_release(struct group_info *gi)
{
 put_group_info(gi);
}

BTF_ID_FLAGS(func, bpf_group_info_acquire, KF_ACQUIRE |
KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_group_info_release, KF_RELEASE)

The verifier need to be told that group_info member of cred
can be trusted

BTF_TYPE_SAFE_TRUSTED(struct cred) {
 struct group_info *group_info;
};

We'll need a lot more of these!

Loop bounds, are hard…

for (i = 0; i < ngroups; i++) {
if (!id_permitted_for_cred(old,

(kid_t){
 .gid = new_group_info->gid[i]

}, GID))
}

The sequence of 8193 jumps is too complex.

bpf_loop(MAX_GROUPS, loop_cb, &loop_ctx, 0);

int loop_ctx(u32 i, struct loop_ctx *ctx) {

 [...]

 if (!id_permitted_for_cred(old,
 (kid_t){

 .gid = new_group_info->gid[i]
 }, GID))

 }

R2 is ptr_group_info
invalid variable offset

if (ngroups > MAX_GROUPS)
return -EPERM;

for (i = 0; i < ngroups; i++) {
if (!id_permitted_for_cred(old,

(kid_t){
 .gid = new_group_info->gid[i]

}, GID))
}

Trick success rate 50%

for (i = 0; i < MAX_GROUPS; i++) {

if (i > ngroups)
break;

if (!id_permitted_for_cred(old,
(kid_t){

 .gid = new_group_info->gid[i]
}, GID))

}

Trick success rate 100% (so far)

What is the community doing with
BPF LSM?

LSM_HOOK(int, 0, userns_create, const struct cred *cred)

+ BPF LSM = A simple solution to a long standing problem.

Can't agree on what a container is?

No problem, flexible policy to the rescue!

Container security

 Container Manager

 Container Manager

 fork()

lsm:task_alloc

lsm:bprm_check_security

Container

bpf_task_local_storage_set(container_id);

Propagate
container ID
forward

Custom security policy

Systemd file-system restrictions

RestrictFileSystems=ext4 tmpfsSEC("lsm/file_open")
int BPF_PROG(restrict_filesystems, struct file *file, int ret)
{

[...]
 int magic_number = file->f_inode->i_sb->s_magic);

 cgroup_id = bpf_get_current_cgroup_id();

 magic_map = bpf_map_lookup_elem(&cgroup_hash, &cgroup_id);
 if (!magic_map)
 return 0;

 if (bpf_map_lookup_elem(magic_map, &magic_number) == NULL)
 return -EPERM;

 return 0;
}

Fix overhead: Almost there..

Summary

● LSM callbacks are indirect function calls

● Indirect function calls are susceptible to Branch target injection

● Retpolines are a security mitigation to prevent Branch Target
Injection attacks

● Newer Intel CPUs added eIBRS, but with Branch History
Injection being found last year. Retpolines are still needed.

Solution

We know the order and the list of LSMs at early boot

So, we don't really need indirect calls.

Just patch these call sites using static calls

The rest of the kernel is already doing it

[A lot of kernel code is patched by alternatives.c at early boot]

Instructions 73,419,697 70,431,874

Branch Misses 407,370 607,235

Cache Misses 31,653 31,686

Branch Loads 170,589,08 181,577,11

Branch Load Misses 407,388 607,253

Okay, but what impact does it have?

No really, what impact?

Benchmark Delta
(+ is better)

Execl Throughput +1.95%

File Write 1024 bufsize 2000 maxblock +6.59%

Pipe Throughput +9.55%

Pipe-based Context Switching +3.02%

Process Creation +2.33%

Shell Scripts (1 concurrent) +1.49%

System Call Overhead +2.78%

System Benchmarks Index Score +3.49%

Guess what is this?

600,000,000,000,000

Thank You!

