
Exceptions in BPF
Kumar Kartikeya Dwivedi
<memxor@gmail.com>

EPFL

mailto:memxor@gmail.com

Agenda

1. Introduction
2. Example, Use cases
3. Design
4. Future Work
5. Questions

Introduction

● An exception aborts the program immediately and returns control back to the
kernel.

● Similar to panic!() or std::terminate (in Rust and C++).
● bpf_throw(cookie) kfunc is used to generate an exception.
● By default, cookie is the return value when an exception is thrown.
● An ‘exception callback’ can be installed to take the passed cookie value as an

input, and return a different return value back to the kernel.

● More importantly, the verifier will not follow a program path further once it
encounters a bpf_throw call.

Example

SEC(“tc”)

__exception_cb(exception_callback)

int prog(struct __sk_buff *ctx)

{

if (ctx->data + 4 > ctx->data_end)

bpf_throw(TC_ACT_SHOT);

…

return TC_ACT_OK;

}

Use cases - Assertions

● bpf_assert_eq, bpf_assert_lt, bpf_assert_gt, bpf_assert_le, bpf_assert_ge,
bpf_assert_range

● Update the verifier’s knowledge about a certain scalar value.

Literally this sequence:

if (reg <op> rhs) goto pc+2

r1 = cookie

call bpf_throw

● Therefore, any improvements to the verifier’s ordinary range and value
tracking code will apply to assertions as well.

Design - High level

● At each program point which can throw (i.e. a bpf_throw kfunc call), for all
frames in the call chain, prepare frame descriptors.

● These descriptors describe the state of the stack and registers (r6 - r9) for
each frame.

● When unwinding, any resources tied to these stack slots or registers will be
cleaned up before unwinding the frames.

● Finally, after all stack frames are unwound, the exception callback, if any, is
invoked with the cookie value supplied to the bpf_throw call.

● Thus, the program is immediately aborted, and all resources are released
through frame by frame unwinding.

call bpf_obj_new
*(u64 *)(r10 - 16) = r0
…
call pc+X

…

obj

call bpf_obj_new
*(u64 *)(r10 - 16) = r0
…
call pc+X

call bpf_sk_lookup
*(u64 *)(r10 - 8) = r0
…
call pc+X

…

obj

sk

call bpf_obj_new
*(u64 *)(r10 - 16) = r0
…
call pc+X

call bpf_sk_lookup
*(u64 *)(r10 - 8) = r0
…
call pc+X call bpf_refcount_acquire

*(u64 *)(r10 - 8) = r0
…
r1 = cookie
call bpf_throw

…

obj

sk

ref

call bpf_obj_new
*(u64 *)(r10 - 16) = r0
…
call pc+X

call bpf_sk_lookup
*(u64 *)(r10 - 8) = r0
…
call pc+X call bpf_refcount_acquire

*(u64 *)(r10 - 8) = r0
…
r1 = cookie
call bpf_throw

…

obj

sk

ref

call bpf_obj_new
*(u64 *)(r10 - 16) = r0
…
call pc+X

call bpf_sk_lookup
*(u64 *)(r10 - 8) = r0
…
call pc+X call bpf_refcount_acquire

*(u64 *)(r10 - 8) = r0
…
r1 = cookie
call bpf_throw

…

obj

sk

ref

call bpf_obj_new
*(u64 *)(r10 - 16) = r0
…
call pc+X

call bpf_sk_lookup
*(u64 *)(r10 - 8) = r0
…
call pc+X

…

obj

sk

call bpf_obj_new
*(u64 *)(r10 - 16) = r0
…
call pc+X

…

obj

Resource cleanup on unwinding

● In frame 0 and frame 1, we have a frame descriptor for each call instruction
that may potentially throw.

● We do a pass before verification to analyze all possible call chains and
identify subprograms that may need generation of frame descriptors.

● Frame descriptor information comes directly from the symbolic execution
state of a frame at a program point.

● The information is then looked up using the program counter at runtime.

Pre-verification pass

● Why a pre-pass? Global subprograms are not descended during symbolic
execution of the main program. Moreover, global subprograms are verified
before the main program.

● We would need to know whether frame descriptors need to be generated for a
subprogram at some point, without knowing whether its callee can throw.

● main -> static subprog 1 -> global subprog 1 -> static subprog 2 -> bpf_throw
● During verification, verifier sees:

○ global subprog -> static subprog 2 -> bpf_throw
○ main -> static subprog 1 -> global subprog 1

● We need to know global subprog 1 will cause an exception to be thrown, to
generate frame descriptor for main and static subprog 1.

Future Work - Catching exceptions within frames

● Right now, we have a catch-all callback that can be installed.
● Invoked after complete unwinding is finished.
● Rather, could we have the equivalent of catch blocks per-frame?
● Perform user-defined cleanup logic which the verifier cannot do.
● Decide whether to continue throwing or stop exception propagation.

● First option: Dedicated compiler generated landing pads and metadata with
program.

● Second option: __constructor, __destructor tags for program BTF types.
● This might allow us to integrate other BPF frontends in the future: Rust with

catch_unwind, C++ with catch blocks.

Future Work

● Assertions just scratch the surface of what’s possible.
● Rather, exceptions allow you to do fundamentally rethink how the verifier

enforces it’s safety properties.
● We can shed a lot of complexity in the verifier by offloading correctness

burden to the runtime.
● This can be both “fast” and “correct”.
● Go back to the original goal: The verifier should only concern itself with

protecting the kernel, not the BPF programmer from himself.
● Lately, we have been ‘tricked’ into doing the latter.

Cancellation

● Whether a program calls bpf_throw or not, how about we still generate frame
descriptors?

● A bit expensive memory wise, but we gain:
● The ability to interrupt a running program*, and know what unwinding would

require at this program point for all frames.
● Possibly steer execution to bpf_throw, which ends up aborting the program

(regs->pc fixup).

* doesn’t work for NMI context programs.

Cancellation

● Once we have the ability to cancel a program:
● We have the ability to write loops which seemingly do not terminate for the

verifier.
● Catch: These loops should be conformant to the bpf_iter style, i.e. the

iterations must converge to a fixpoint, so that we can reason about program
state at each iteration.

● Runtime cleanup only cares about kernel resources, so other data is
irrelevant.

“Infinite” Loops

● Being able to pass through loops which seemingly never terminate is very
powerful.

● Can express all kinds of things:
○ Iteration logic for user-managed linked lists
○ Spin loops for custom spin locks.

● Here, we rather enforce this by putting a limit on program execution,
‘cancelling’ it if it gets stuck.

● Depending on the configuration, the limits could vary. Some setups could
tolerate programs running for 1ms, some for 5000ns. You need a worst case
bound.

● Either do ‘cancellation’, or have a high bound on the loop and throw when
breached.

Example

bpf_for (i, 0, BPF_MAX_LOOPS) {

if (elem->next == NULL) ← Linked list built out of array map nodes

break;

task = bpf_task_from_pid(elem->pid);

if (!task)

continue;

…

bpf_task_release(task);

elem = elem->next;

}

Example

bpf_for (i, 0, BPF_MAX_LOOPS) {

if (elem->next == NULL) ← No guarantee of acyclicity

break;

task = bpf_task_from_pid(elem->pid);

if (!task)

continue;

…

bpf_task_release(task);

elem = elem->next;

}

Example

bpf_for (i, 0, BPF_MAX_LOOPS) { ← BPF_MAX_LOOPS is too big (8 million)

if (elem->next == NULL)

break;

task = bpf_task_from_pid(elem->pid);

if (!task)

continue;

…

bpf_task_release(task);

elem = elem->next;

}

Example

bpf_for (i, 0, BPF_MAX_LOOPS) { ← We would rather ‘cancel’ the loop if stuck

if (elem->next == NULL)

break;

task = bpf_task_from_pid(elem->pid);

if (!task)

continue;

…

bpf_task_release(task);

elem = elem->next;

}

bpf_obj_new, Lists, RB-Trees

● Since we hand over kernel memory to the program, we need to ensure we get
it back.

● Once it is used in a shared fashion across programs, we need to understand
lifetime and ownership semantics.

● Unique ownership vs Shared ownership - The latter is difficult to reason
about, and restrictive.

● Once this memory is used for an object part of a shared data structure, we
need to understand synchronization invariants.

● Instead, we could remove all this complexity in favor of a simpler scheme.
○ Let programs build synchronization primitives.
○ Let programs build their own data structures and iteration logic.
○ All memory comes from a program managed “heap” (e.g. BPF array map, but something more

dynamic) rather than kmalloc.

What have I tried so far?

● Spin locks (with multiple levels, and deadlock detection).
● Data structures (Hash maps, Linked Lists, RB-Trees, Skip List, QP-Trie).

● Exceptions (through cancellation) underpin the safety argument for all of
these. They allow enforcing the termination property, without compromising
program safety.

● Use maps as heap to manage memory.
● Unburden the verifier from reasoning from about concurrency,

synchronization, liffetimes, and memory management.
● Only enforce safety properties: resource safety, memory safety, termination.

Questions?

