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Introduction

An exception aborts the program immediately and returns control back to the
kernel.

Similar to panic! () or std: :terminate (in Rust and C++).

bpf throw(cookie) kfunc is used to generate an exception.

By default, cookie is the return value when an exception is thrown.

An ‘exception callback’ can be installed to take the passed cookie value as an
input, and return a different return value back to the kernel.

More importantly, the verifier will not follow a program path further once it
encounters a bpf_throw call.



Example

SEC(“tc”)
__exception_cb(exception_callback)

int prog(struct _ sk buff *ctx)
{

if (ctx->data + 4 > ctx->data_end)

bpf_throw(TC_ACT_SHOT);

return TC_ACT_OK;



Use cases - Assertions

e bpf assert eq, bpf assert It, bpf assert gt, bpf _assert_le, bpf assert ge,
bpf assert _range
e Update the verifier's knowledge about a certain scalar value.

Literally this sequence:

if (reg <op> rhs) goto pc+2
rl = cookie

call bpf throw

e Therefore, any improvements to the verifier’s ordinary range and value
tracking code will apply to assertions as well.



Design - High level

e At each program point which can throw (i.e. a bpf_throw kfunc call), for all
frames in the call chain, prepare frame descriptors.

e These descriptors describe the state of the stack and registers (r6 - r9) for
each frame.

e \When unwinding, any resources tied to these stack slots or registers will be
cleaned up before unwinding the frames.

e Finally, after all stack frames are unwound, the exception callback, if any, is
invoked with the cookie value supplied to the bpf throw call.

e Thus, the program is immediately aborted, and all resources are released
through frame by frame unwinding.
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Resource cleanup on unwinding

e Inframe 0 and frame 1, we have a frame descriptor for each call instruction

that may potentially throw.
e \We do a pass before verification to analyze all possible call chains and
identify subprograms that may need generation of frame descriptors.

e Frame descriptor information comes directly from the symbolic execution
state of a frame at a program point.
e The information is then looked up using the program counter at runtime.



Pre-verification pass

e \Why a pre-pass? Global subprograms are not descended during symbolic
execution of the main program. Moreover, global subprograms are verified
before the main program.

e \We would need to know whether frame descriptors need to be generated for a
subprogram at some point, without knowing whether its callee can throw.

e main -> static subprog 1 -> global subprog 1 -> static subprog 2 -> bpf_throw

e During verification, verifier sees:
o global subprog -> static subprog 2 -> bpf_throw
o main -> static subprog 1 -> global subprog 1

e \We need to know global subprog 1 will cause an exception to be thrown, to
generate frame descriptor for main and static subprog 1.



Future Work - Catching exceptions within frames

Right now, we have a catch-all callback that can be installed.
Invoked after complete unwinding is finished.

Rather, could we have the equivalent of catch blocks per-frame?
Perform user-defined cleanup logic which the verifier cannot do.
Decide whether to continue throwing or stop exception propagation.

First option: Dedicated compiler generated landing pads and metadata with
program.

Second option: __ constructor, _ destructor tags for program BTF types.
This might allow us to integrate other BPF frontends in the future: Rust with
catch_unwind, C++ with catch blocks.



Future Work

e Assertions just scratch the surface of what's possible.

e Rather, exceptions allow you to do fundamentally rethink how the verifier
enforces it's safety properties.

e We can shed a lot of complexity in the verifier by offloading correctness
burden to the runtime.

e This can be both “fast” and “correct”.

e (o back to the original goal: The verifier should only concern itself with
protecting the kernel, not the BPF programmer from himself.

e Lately, we have been ‘tricked’ into doing the latter.



Cancellation

e \Whether a program calls bpf_throw or not, how about we still generate frame
descriptors?

e A bit expensive memory wise, but we gain:

e The ability to interrupt a running program?*, and know what unwinding would
require at this program point for all frames.

e Possibly steer execution to bpf throw, which ends up aborting the program
(regs->pc fixup).

* doesn’t work for NMI context programs.



Cancellation

e Once we have the ability to cancel a program:

e We have the ability to write loops which seemingly do not terminate for the
verifier.

e Catch: These loops should be conformant to the bpf_iter style, i.e. the
iterations must converge to a fixpoint, so that we can reason about program
state at each iteration.

e Runtime cleanup only cares about kernel resources, so other data is
irrelevant.



“Infinite” Loops

e Being able to pass through loops which seemingly never terminate is very
powerful.

e Can express all kinds of things:
o Iteration logic for user-managed linked lists
o Spin loops for custom spin locks.

e Here, we rather enforce this by putting a limit on program execution,
‘cancelling’ it if it gets stuck.

e Depending on the configuration, the limits could vary. Some setups could
tolerate programs running for 1ms, some for 5000ns. You need a worst case
bound.

e Either do ‘cancellation’, or have a high bound on the loop and throw when
breached.



Example

bpf_for (i, ©, BPF_MAX_LOOPS) {
if (elem->next == NULL) < Linked list built out of array map nodes
break;
task = bpf_task from pid(elem->pid);
if (!task)

continue;

bpf task release(task);

elem = elem->next;



Example

bpf_for (i, ©, BPF_MAX_LOOPS) {
if (elem->next == NULL) «— No guarantee of acyclicity
break;
task = bpf_task from pid(elem->pid);
if (!task)

continue;

bpf task release(task);

elem = elem->next;



Example

bpf for (i, ©, BPF_MAX LOOPS) { <« BPF_MAX LOOPS is too big (8 million)
if (elem->next == NULL)
break;
task = bpf_task from pid(elem->pid);
if (!task)

continue;

bpf task release(task);

elem = elem->next;



Example

bpf for (i, ©, BPF_MAX LOOPS) { <« We would rather ‘cancel’ the loop if stuck
if (elem->next == NULL)
break;
task = bpf_task from pid(elem->pid);
if (!task)

continue;

bpf task release(task);

elem = elem->next;



bpf _obj new, Lists, RB-Trees

e Since we hand over kernel memory to the program, we need to ensure we get
it back.

e Once itis used in a shared fashion across programs, we need to understand
lifetime and ownership semantics.

e Unique ownership vs Shared ownership - The latter is difficult to reason
about, and restrictive.

e Once this memory is used for an object part of a shared data structure, we
need to understand synchronization invariants.

e Instead, we could remove all this complexity in favor of a simpler scheme.
o Let programs build synchronization primitives.
o Let programs build their own data structures and iteration logic.
o All memory comes from a program managed “heap” (e.g. BPF array map, but something more
dynamic) rather than kmalloc.



What have | tried so far?

e Spin locks (with multiple levels, and deadlock detection).
e Data structures (Hash maps, Linked Lists, RB-Trees, Skip List, QP-Trie).

e Exceptions (through cancellation) underpin the safety argument for all of
these. They allow enforcing the termination property, without compromising
program safety.

e Use maps as heap to manage memory.

e Unburden the verifier from reasoning from about concurrency,
synchronization, liffetimes, and memory management.

e Only enforce safety properties: resource safety, memory safety, termination.



Questions?



