
Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Evolving the BPF Type Format (BTF)

Alan Maguire
Linux Kernel Networking, Oracle
alan.maguire@oracle.com
blogs.oracle.com/linuxkernel
November 2023

mailto:alan.maguire@oracle.com

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The value of the BPF Type Format
The BPF Type Format compact description of types, functions, variables
that is embedded in kernel/modules for most distros benefits

• BPF users, by unlocking advanced BPF tracing features (fentry, fexit),
Compile Once - Run Everywhere (CO-RE), struct_ops, kfuncs, etc

• ftrace users,
by providing argument types and return values to allow more powerful trac
ing

• Debuggers, since having always-available information about kernel types,
functions etc is a major win. See Brendan Gregg’s “Fast by Friday” talk; BTF
can help realize that vision.
Once we can assume BTF availability, all sorts of solutions become possible!

2

https://lore.kernel.org/bpf/169272153143.160970.15584603734373446082.stgit@devnote2/
https://lore.kernel.org/bpf/169272153143.160970.15584603734373446082.stgit@devnote2/
https://www.youtube.com/watch?v=s1mobd8t_u0

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Goals
So we should seek (in order of priority)

• To maximize availability of BTF, handling issues that limit its adoption.
• To maximize the value of BTF to users once present, by solving the usability

issues they care about.
• To make it easy for developers to evolve the format when necessary.

Such evolution should strive to
• Avoid breaking existing tools where possible.
• Minimize coordination pain between kernel and toolchains when changes

are made.

3

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

BTF adoption issues
• Issue #1: BTF is too big to be stored in vmlinux for embedded systems.
• Solution: support CONFIG_DEBUG_INFO_BTF=m, where BTF is delivered in

vmlinux_btf.ko instead. Since modules can live on different partitions for
such systems, module-based delivery of BTF solves the problem. When
vmlinux_btf.ko is loaded, vmlinux BTF should still appear in
/sys/kernel/btf/vmlinux; this will require no toolchain changes and mean
the user experience is identical once vmlinux_btf.ko is loaded.

4

https://lore.kernel.org/bpf/1b9e4d2c-34d4-2809-6c91-d14092061581@oracle.com/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

BTF adoption issues – solving vmlinux BTF size problems

5

vmlinux

.BTF section

vmlinux vmlinux_btf.ko

.BTF section

CONFIG_DEBUG_INFO_BTF=y

CONFIG_DEBUG_INFO_BTF=m

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

BTF adoption issues
• Issue #2: modules build less frequently than the underlying kernel can end

up with invalidated BTF, as that BTF is defined relative to base vmlinux BTF.
• Solution: support “standalone” BTF, which allows module builders to

generate self-contained BTF. Generating such BTF is easy, but the problem is
toolchains assume module BTF is split BTF. We can address this at BTF load
time by “renumbering” the standalone BTF in-kernel representation to start
at last_vmlinux_btf_id + 1 (as split BTF would).

• If we do so, it looks just like split BTF to tools; it just happens to be fully
self-referential – no toolchain changes are then needed.

• Renumbering needs to handle the BTF_ids section too, since it will contain
the old BTF ids.

6

https://lore.kernel.org/bpf/CAEf4Bzbi7XiNVKYmhmiywsU0PWVg30=EOhsBWFd_xsj2vpy1xg@mail.gmail.com/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Split BTF versus standalone BTF

7

vmlinux BTF
ID 100
BTF_KIND_FUNC
changes to
BTF_KIND_STRUCT
when vmlinux is rebuilt

module BTF
Refers to ID 100
expecting
BTF_KIND_FUNC;
BTF is invalid!

Standalone
module BTF
Self-referential, so
vmlinux changes cannot
invalidate it.

vs

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

BTF adoption issues
• Part of the solution for both is having BTF_BASE variable in

Makefile.modfinal
• When vmlinux BTF is delivered via a module, BTF_BASE will refer to the

temporary BTF location (since the vmlinux_btf.ko module may not exist
yet); modules will build their BTF relative to that, while the temporary BTF
will be copied to the vmlinux_btf.ko module when that module is built.

• For standalone modules, they can specify standalone BTF by specifying an
empty BTF_BASE via
 make BTF_BASE= M=path/2/module

• Tools will work the same as for split BTF, for example we can run
 bpftool btf dump file /sys/kernel/btf/bpf_testmod_standalone

8

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

BTF usability issues
• Issue #1: Optimizations can mean that static kernel functions have

.isra.0, .constprop.0 suffixes, and these were not represented in BTF. This
meant we cannot trace all the functions in /proc/kallsyms.

• Solution:
– Optimized functions are now encoded in BTF when
btf_gen_optimized is specified for pahole (now the default)

– However we still need to unambiguously link them to the symbol they
represent, since their BTF name is the unsuffixed version (“foo” not
“foo.isra.0”

– This can be solved by fixing the second issue...

9

https://lore.kernel.org/lkml/20230109094247.1464856-1-imagedong@tencent.com/
https://lore.kernel.org/bpf/1675949331-27935-1-git-send-email-alan.maguire@oracle.com/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

BTF usability issues
• Issue #2: Multiple static functions can have the same name but different

function signatures. Currently we omit such functions from BTF to avoid
ambiguity (via --skip_encoding_btf_inconsistent_proto/consistent).

• Solution:
– BTF needs to encode addresses for functions. A simple “symbol table”

would suffice, i.e. in the BTF header we could have
__u32 symtab_off; /* offset of symtab section */

__u32 symtab_len; /* length of symtab section */

– Table format would not need linkage or names (since they are in the
BTF_KIND_FUNC encoding), just <__u32 id, __u64 addr> pair per
symbol. A BTF id (function signature) might have multiple pairs.

10

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

BTF usability issues
• Why a symbol table?

– Tried and tested solution, simple semantics: what addresses are associated with this function
signature?

– Backwards compatible: continue to use KIND_FUNC, KIND_VAR, just have extra info in symtab.
– Simplifies deduplication: if a new kind incorporating symbol address was added, multiple instances

of the same static function would not be dedup-ed. This sort of thing can have cascading effects on
BTF size, so a separation is cleaner.

– Simpler structure: multiple instances of the same function simply mean multiple symbol table
entries, so sort the symtab by BTF id

– When BTF is loaded, we add a O(1) index from BTF id → index in symtab
– Add API like int bpf_get_type_addresses(struct btf *btf, __u32 id, void **addresses);

11

BTF id address

100 ffffffffc04c42a0

100 ffffffffc04c4010

120 ffffffffc08ad010

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

BTF usability issues
• Issue #3: Only per-CPU global variables are currently included in BTF. Having

all global variables would simplify BPF code, help debuggers utilize BTF, etc.
• Solution:

– An RFC was proposed to add variables. In investigating it the
ambiguous name issue was identified for variables too.

– Hence variables could make use of the symbol table also; again we just
need a <__u32 id, __u64 addr> pair per symbol.

12

https://lore.kernel.org/bpf/20221104231103.752040-1-stephen.s.brennan@oracle.com/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

BTF usability issues

• Issue #4: If BTF encounters a BTF kind it does not recognize, it cannot parse
the BTF further. So if a tool built with an older libbpf is used on newer BTF,
it falls over when trying to parse it.

• Solution:
– At BTF encoding time, encode the kind layout for each kind known

about. Then parsers can use the layout to parse the BTF, even if they
cannot use all the kinds available.

– This allows bpftool btf dump to work in raw mode, even for kinds that
are not known to it (provided it knows how to read kind layout info)

13

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

BTF usability issues
$ bpftool btf dump file /sys/kernel/btf/vmlinux format meta

...

kind 0 UNKNOWN flags 0x0 info_sz 0 elem_sz 0

kind 1 INT flags 0x0 info_sz 4 elem_sz 0

kind 2 PTR flags 0x0 info_sz 0 elem_sz 0

kind 3 ARRAY flags 0x0 info_sz 12 elem_sz 0

kind 4 STRUCT flags 0x0 info_sz 0 elem_sz 12

...

14

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

BTF usability issues

• Issue #5: There is no mechanism to explicitly determine if kernel/module
BTF are matched; when loading a module, we simply parse module BTF
based on the vmlinux BTF until something fails.

• Solution:
– Generate CRCs for vmlinux, module BTF. When module BTF is added,

store its CRC and the vmlinux base CRC it was encoded relative to.
– When loading a module, we can explicitly reject it if its base CRC !=

vmlinux BTF CRC
– We can also use the presence of a module CRC and the absence of

base BTF CRC to signify it is a standalone BTF module.

15

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Issues evolving BTF

• Issue #1: BTF generation consisted of specifying a confusing set of opt-in
and opt-out parameters; these needed to be coordinated with pahole
versions since if the option didn’t exist, pahole would exit in error.

• Solution:
– pahole now supports the simpler --btf_features options; a set of opt-in

features is supplied.
– If features do not exist in the –-btf_features list, pahole ignores them.
– This allows us to no longer version-check pahole for feature support

(aside from checking it is the first version that supports -–btf_features),
and new features no longer need to be tied to specific pahole versions.

16

https://lore.kernel.org/bpf/20231023095726.1179529-1-alan.maguire@oracle.com/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Issues evolving BTF

• Issue #2: When new BTF kinds are added, older toolchains break
• Solution:

– See earlier: this is an issue both for users of BTF and a tax imposed on
evolving BTF; supporting kind layout can at least solve the BTF parsing
problem.

17

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The big picture
• The set of changes described previously suggest some UAPI additions to

struct btf_header:
struct btf_header {
 __u32 type_len; /* length of type section */
 __u32 str_off; /* offset of string section */
 __u32 str_len; /* length of string section */
+ __u32 kind_layout_off;/* offset of kind layout section */
+ __u32 kind_layout_len;/* length of kind layout section */
+ __u32 symtab_off; /* offset of kind layout section */
+ __u32 symtab_len; /* length of kind layout section */
+ __u32 crc; /* crc of BTF; used if flags set
BTF_FLAG_CRC_SET */
+ __u32 base_crc; /* crc of base BTF; used if flags
set BTF_FLAG_BASE_CRC_SET */
 };

18

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The big picture
What are the costs of all of this?

• For updated BTF header, + 24 bytes for kind layout, symtab, CRC info.
• 80 bytes (4 * NR_BTF_KINDS) for kind layout section.
• For function addresses, symtab entry (12 bytes) * number of functions

(~50000) = ~0.5Mb for vmlinux BTF.
• Variables add around 2Mb to vmlinux BTF (source here)
• CRC verification required on module load for modules specifying CRCs

19

https://lore.kernel.org/bpf/20221104231103.752040-1-stephen.s.brennan@oracle.com/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Current status
Work done

• Support for --btf_features in pahole
• Encoding of optimized functions in BTF

Work in progress
• V4 patch contains

– Support for kind layout, CRC+ verification, standalone BTF +
renumbering

To be done
• CONFIG_DEBUG_INFO_BTF=m, BTF symbol table, BTF variable support

20

https://lore.kernel.org/bpf/20231023095726.1179529-1-alan.maguire@oracle.com/
https://lore.kernel.org/bpf/20231112124834.388735-1-alan.maguire@oracle.com/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Conclusion
We can make life a bit easier for folks who want to

● Adopt BTF but who are currently blocked.
● Utilize BTF, either in the BPF context or elsewhere (ftrace, debuggers, etc).
● Evolve BTF to add new features.

However since such changes involve UAPI updates, it’s best to try and do
them in a coordinated manner, thinking through the interactions. Happily
doing so finds a bunch of synergies between the solutions needed.

21

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Thank you!

22

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

References
● ftrace series using BTF

https://lore.kernel.org/bpf/169272153143.160970.15584603734373446082.stgit@devnote2/
● Fast by Friday, presented by Brendan Gregg at the eBPF summit

https://www.youtube.com/watch?v=s1mobd8t_u0
● Issues with vmlinux BTF for embedded systems

https://lore.kernel.org/bpf/1b9e4d2c-34d4-2809-6c91-d14092061581@oracle.com/
● Issues with module BTF:

https://lore.kernel.org/bpf/CAEf4Bzbi7XiNVKYmhmiywsU0PWVg30=EOhsBWFd_xsj2vpy1xg@mail.gmai
l.com/

● Issues with optimization-suffixed functions

https://lore.kernel.org/lkml/20230109094247.1464856-1-imagedong@tencent.com/

23

https://lore.kernel.org/bpf/169272153143.160970.15584603734373446082.stgit@devnote2/
https://www.youtube.com/watch?v=s1mobd8t_u0
https://lore.kernel.org/bpf/1b9e4d2c-34d4-2809-6c91-d14092061581@oracle.com/
https://lore.kernel.org/bpf/CAEf4Bzbi7XiNVKYmhmiywsU0PWVg30=EOhsBWFd_xsj2vpy1xg@mail.gmail.com/
https://lore.kernel.org/bpf/CAEf4Bzbi7XiNVKYmhmiywsU0PWVg30=EOhsBWFd_xsj2vpy1xg@mail.gmail.com/
https://lore.kernel.org/lkml/20230109094247.1464856-1-imagedong@tencent.com/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

References
● Support in pahole for “--btf_features”

https://lore.kernel.org/bpf/20231023095726.1179529-1-alan.maguire@oracle.com/
● RFC for BTF variable support.

https://lore.kernel.org/bpf/20221104231103.752040-1-stephen.s.brennan@oracle.com/
● BTF kind layout, CRC, standalone module support v4 patch series

https://lore.kernel.org/bpf/20231112124834.388735-1-alan.maguire@oracle.com/

pahole patch to support kind layout, CRCs in vmlinux/module BTF

https://lore.kernel.org/bpf/20231110111533.64608-1-alan.maguire@oracle.com/

24

https://lore.kernel.org/bpf/20231023095726.1179529-1-alan.maguire@oracle.com/
https://lore.kernel.org/bpf/20221104231103.752040-1-stephen.s.brennan@oracle.com/
https://lore.kernel.org/bpf/20231112124834.388735-1-alan.maguire@oracle.com/
https://lore.kernel.org/bpf/20231110111533.64608-1-alan.maguire@oracle.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

