
BoF:
Multiple system-wide low 
power-states (S2I/S2R)
Ulf Hansson, Linaro
ulf.hansson@linaro.org



Agenda
● Background
● Use-cases - discussions
● What’s the way forward?



Background

LOW 
POWER 
STATE

S2R

CPU

S2I

CPU

S2R/S2I

DEVICE

● Two states for CPUs, while S2I is preferred.
● One state for device PM.

Looks good! 
What’s the 
problem?

LOW 
POWER 
STATE

LOW 
POWER 
STATE



#1 PM co-processor
● Controls power-domain(s) for peripheral devices.
● Manages configurations for system wakeups.
● Multiple low power-states are supported.
● Modelled as a generic PM domain (genpd provider).

Problem:
● Entering the deepest state can break the system wakeup latency 

constraint for a running use-case.

Thoughts:
● Do we need a new genpd governor?
● What corresponds to the system wakeup latency?
● Does cpu_dma_latency correspond to the constraint?



#2 CPUs, S2I and PREEMT_RT
● Multiple low power-states are supported.
● Deeper states are disabled for CPUIdle.

Problems:
● Deeper states would work for S2I, to not waste power.
● To enable deeper states, the system wakeup latency constraint 

must be guaranteed, for the running use-case.

Thoughts:
● Do we need a governor for S2I?
● What corresponds to the system wakeup latency?
● Does cpu_dma_latency correspond to the constraint?



#3 NVMe - storage
● Autonomous Power State Transition (APST) and powered-off.
● APST is used when applicable.

Problems:
● APST or not - NVMe may consume power.
● Power-off instead of APST - but when?
● Frequently doing power-off/on could hurt durability.

Thoughts:
● Should user-space decide based on the use-case?
● Device specific or generic (sleep duration)?
● Similar problem exists for eMMC and SD.



#4 More use-cases?
●



What’s the way forward?



Thank you


