
Android - 16K Page
Size Support

LPC 2023

Kalesh Singh
Google

Juan Yescas
Google

Why 16k page sizes?

Performance Benchmarks on Pixel 6 and Pixel 6 Pro showed
- 4x reduction in page faults
- Faster boot time (0.8 seconds faster)

- Faster app launch time (~3.16%)

- ~17% for Google Search
- ~30% for Google News

- Power consumption of the phone was reduced by 4.56% on average
- Several other Industry standard benchmarks such as Geekbench, GFXbench, Speedometer, etc showed between 2%-10% perf improvements.
- Other device vendors have seen similar perf gains

Trade Offs
Increase in memory usage due:

- ELF Segments are 16k and cause ELF fragmentation (2.19% for 4k page size vs 9.57% for 16k page size)

Minimal increase in disk space

- minimal increase in disk size in F2FS and EXT4 filesystem - 0.03%

ELF Loading

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x000300 0x000800 R E 0x1000
 LOAD 0x001000 0x0000000000001000 0x0000000000001000 0x000500 0x000900 R 0x1000
 LOAD 0x002000 0x0000000000002000 0x0000000000002000 0x000500 0x000700 RW 0x1000

 Section to Segment mapping:
 Segment Sections…
 00 .text
 01 .rodata
 02 .data .bss

Section Headers:
 [Nr] Name Type Address Off Size ES Flg Lk Inf Al
 [0] .text PROGBITS 0000000000000000 000000 000800 00 AX 0 0 16
 [1] .rodata PROGBITS 0000000000001000 001000 000900 00 A 0 0 32
 [2] .data PROGBITS 0000000000002000 002000 000500 00 WA 0 0 32
 [3] .bss NOBITS 0000000000002100 002500 000200 00 WA 0 0 32

File Size: 0x002500

Simplified ELF file (Sections omitted for simplicity)

ELF Loading

ELF Alignment (16K Page Size)

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x000300 0x000800 R E 0x4000
 LOAD 0x004000 0x0000000000004000 0x0000000000004000 0x000500 0x000900 R 0x4000
 LOAD 0x008000 0x0000000000008000 0x0000000000008000 0x000500 0x000700 RW 0x4000

 Section to Segment mapping:
 Segment Sections…
 00 .text
 01 .rodata
 02 .data .bss

Section Headers:
 [Nr] Name Type Address Off Size ES Flg Lk Inf Al
 [0] .text PROGBITS 0000000000000000 000000 000800 00 AX 0 0 16
 [1] .rodata PROGBITS 0000000000004000 004000 000900 00 A 0 0 32
 [2] .data PROGBITS 0000000000008000 008000 000500 00 WA 0 0 32
 [3] .bss NOBITS 0000000000008500 008500 000200 00 WA 0 0 32

File Size: 0x008500

Simplified ELF file (Sections omitted for simplicity)

Android set LLVM max-page-size default to 4096

-z, max-page-size=16384

https://reviews.llvm.org/D55029

VMA Slab Memory Increase

Bionic Loader Updates

Compatibility Solutions?

(4k binaries on 16k page size kernel)

Map all the segments as RWX

Realign the ELF files to 16k

What could change when this -Wl,-z,max-page-size=16384 linker flag is used?

- Program headers (struct Elf64_Phdr)
- Sections that contain code (.text, .init, etc)

Tool to compare elf64 files struct field by struct field system/memory/libmeminfo/+/2624789

And we realized

- Section .dynsym
- Section .rela.dyn
- Section .rela.plt
- Section .plt
- Section .dynamic
- Section .got
- Section .data

We tried

- Linear disassembly

- Recursive disassembly

https://android-review.googlesource.com/c/platform/system/memory/libmeminfo/+/2624789

Drivers Issues

One Particular UFS host controller

Symptom

- Partitions couldn’t be found during booting

Causes

- The UFS Host Controller used by the device didn’t follow the Host Controller Interface (HCI).
- The UFS Host controller uses segments smaller than the page size, which it is not supported in Linux.

Solution

- Add support in Linux to handle segments smaller than the page size.
- See Bart Van Assche’s patches PATCH v6 0/8] Support limits below the page size

https://lore.kernel.org/linux-block/20230612203314.17820-1-bvanassche@acm.org/

Trusty (TEE OS)

Shared Memory Size and Alignment

- The transfer of information between Linux and Trusty involves the setting up of shared memory buffers.

- Importantly the translation regimes (linux kernel, el2 hypervisor, and trusty) involved can all have different translation granules.

- If X is the larger translation granule size, then the size of the memory region must be a multiple of X.

- The base address of the memory region must be aligned to X. Arm Firmware Framework for Arm A-profile - 4.6 Memory granularity and

alignment

Memory Sizes Expressed as Page Counts

- Arm Firmware Framework for Arm A-profile expresses the size of memory regions as counts of 4K pages.
- The trusty driver updated to manage buffer sizes using 4K granule counts instead of PAGE_SIZE granule; since the kernel PAGE_SIZE can now be

greater than 4K.

FFA_PAGE_COUNT = KERNEL_PAGE_COUNT x (KERNEL_PAGE_SIZE / FFA_PAGE_SIZE)

FFA_PAGE_SIZE = 4KB

KERNEL_PAGE_SIZE = [4KB | 16KB | 64KB]

https://developer.arm.com/documentation/den0077/latest/
https://developer.arm.com/documentation/den0077/latest/
https://developer.arm.com/documentation/den0077/latest/

Emulating 16KB Page Size on x86

Why?

- Majority of Android app developers develop on x86 (Windows)

- ARM64 Android emulator on x86 is very slow (impractical)

- Need to provide testing platform for x86 developers

How?

- Kernel presents a 16KB page size to userspace

- Only allow mmap/mprotect (and friends) to operate on 16KB aligned addresses and 16KB multiple sizes.

- VMAs are always 16K aligned and 16K multiple sized.

Filemap Fault Handling with Emulated 16KB Page Size

Page Table Walks

and

Virtual Address Issues

4k page size
 and
39-bits VA

16 page size
 and
36-bits VA

36-bits VA
 and
30 GB hole

Credits: Isaac Manjarres and William McVicker

Principles of ARM Memory Maps (ARM to publish updated documentation)

https://developer.arm.com/documentation/den0001/latest/

Early Comparisons with Folios

4k pages + Folios 16k Pages

Geekbench ~6.0% ~9.0%

Speedometer ~4.0% ~7.0%

Credits: Ryan Roberts (ARM)

Questions?
- How do we engage with hardware vendor providers so they follow standards such a HCI?

- When hardware components don’t implement the standards and there are a lot of devices using the component, Should the
Linux Kernel add support for this hardware component?

- Does maintainer's view of waiting for better hardware for upstream (rather than adding lots of complexity for early "broken"
controllers) a reasonable approach?

- Suggestions to achieve backwards compatibility of 4k binaries in 16k page size kernels?

