

Reporting and tracking
regressions

across the ecosystem

Gustavo Padovan (Collabora)
Ricardo Cañuelo (Collabora)
Thorsten Leemhuis

Thorsten Leemhuis

Regressions are hard!

Getting regressions reported, tracked and fixed is a complex process.

The problem

Thorsten Leemhuis

Hear you beyond the frustration.
● What can we do to improve?
● What are some of the key bottlenecks (beyond maintainers time)?
● How can regzbot and CI systems help more?

Before we dive into the discussion, short update of regzbot and other open topics that we missed on Monday’s talk

Goals for the BoF

Thorsten's kernel regression
tracking efforts in a nutshell

Thorsten Leemhuis

Thorsten Leemhuis

Doing regression tracking
for ~2 years now

Doing it with the help of regzbot,
a "regression tracking bot" I wrote

a regression report from Jiri in
ZHc2fm+9daF6cgCE@krava

illustrates how it works

side note: Jiri could have added the report
to the tracking himself by including:

#regzbot introduced 2e1c017077

works somewhat similar with
bugzilla.kernel.org links

[and arbitrary links as well, up to a point]

I keep an eye on tracked
regressions

I keep an eye on tracked
regressions

and will show up with questions
if things stall ;-)

Developer can interact with
regzbot

via regzbot commands in a reply to the
report, for example when a Link:/Closes: tag

was forgotten

Developer can interact with
regzbot

but do not have to or
care about regzbot at all

They don't have to care about my
regression tracking work either…

…unless of course it looks like a
regression is not handled

appropriately

in the ideal case adding the report
to the tracking is thus the only

extra-work required

Regzbot itself is pretty basic and
sometimes a bit rough,

but does what it's designed for

Important features on the road map (priority):
● support for issues submitted to github and gitlab

projects (WIP)

● separate actionable vs non-actionable reports in the UI
(actionable: a sane report with a bisection result)

● make it more obvious in the UI when a fix is out for
review

● make it dead simple to add regressions to the tracking
where a mail contains both report and a fix

Important features on the road map (later):
● various UI fine tuning (command line interface, website)

● mark some regressions as "priority"

● tagging to identify subsystems or sources of reports (like CIs)

● subsystem specific webpages & reports

● export data better to make it more useful for subsystem and
stable maintainers

Ideas for more features:
● check pull requests to Linus and yell if they are known to

cause regressions?

That's the state of things right
now!

…which brings us to…

What do you want
regzbot or me to do?

some people want to add
regressions to regzbot
that CI systems found

I see that it would be useful and definitely
want that to happen in the long term

I see that it would be useful and definitely
want that to happen in the long term

At the same time I need to be able
to stay on top of tracked regressions

this hence definitely needs separation
between actionable vs non-actionable

reports

this hence definitely needs separation
between actionable vs non-actionable

reports

and maybe some CI reports should only
become "actionable" after some human

performed a sanity check

Other open issues

- Integration of regression status in CI
systems:
- Modelling of regression life cycle

- Close the loop between regression detection
and developers:
- CI systems provide data to users

(unidirectional)
- Status changes generated by users could

be communicated back to CI systems

- Regzbot provides these features
- Integrating them into the source CI data can

lead to more useful and up-to-date reports

