

Challenges in Device Tree Sync - kernel, Zephyr, U-boot, System DT

Date: 2023-11-15 Nishanth Menon

About us: TI Processors and Open source

Zephyr

Decades of contribution and collaboration

Ingrained culture to give back to the community

Upstream FIRST!

Focus on long term, sustainable and quality products

Upstream and opensource ecosystem in device architecture

Upstream FIRST mentality!

About me

Senior Member Technical Staff at Texas Instruments, Dallas.

- U-Boot and kernel.org developer
- Maintainer, TI K3 Device tree
- Just a user of the sink, not the plumber

Disclaimers

- This is a technology presentation, not product-readiness or roadmap commitment
- Opinions presented here are that of the speaker and may not reflect that of Texas Instruments Inc, DT maintainers or any of the software ecosystems.
- This presentation is not going to solve world DT problems.

Overview

- The Long-short Tale of DT
- Perspectives
- Likes and Dislikes
- Solution? Middle ground?
- Discussion/Q&A

By ToLo46 - Own work, CC BY-SA 4.0.

Long short tale of Device Tree

- SPARC/PowerPC antecedents
- See this presentation by Neil Armstrong: <u>https://elinux.org/images/0/06/ELCE_2019_DeviceTree_Past_Present_Future.pdf</u>
- Device Tree and YAML debates
 - https://www.konsulko.com/yaml-and-device-tree
 - <u>https://static.linaro.org/connect/lvc21f/presentations/LVC21F-315.pdf</u>
- Device Trees and overlays
 - <u>https://docs.kernel.org/devicetree/overlay-notes.html</u>

devicetree-specification.readthedocs.io

The Devicetree Project

6

And why exactly did I start this journey?

- Blink an LED from A53 from Linux and another LED from Zephyr running on M4F on AM625 based BeaglePlay
- Wanted to do DT just once! I expected:

• But the solution, apparently, isn't that simple!

The Elephant – AM625

Figure 1-1. Functional Block Diagram

https://www.ti.com/lit/pdf/spruiv7 8

Three views of the Elephant

Penguin People

Submarine People

Kite People

Usage in penguin people ecosystem

• Tools:

- dtc <u>https://git.kernel.org/pub/scm/utils/dtc/dtc.git/</u>
- dt-schema <u>https://github.com/devicetree-org/dt-schema/</u>
- libfdt, dtc is imported from git.kernel.org tree
- Dt-schema checkers are maintained separately.
 - Core bindings are maintained in dt-schema repository
 - Specific bindings maintained in kernel.org Documentation/devicetree/bindings/
- Basic rules:
 - Must be hardware description (in some cases, firmware description is allowed)
 - Shall adhere to device tree bindings (in yaml)
- Unstated rules: quite a few, some of which involves usage by Linux drivers.
- Licensing: GPL2

DT View from penguin people

- How does the AM625 device tree structure look like?
 - https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/boot/dts/ti

Usage in submarine people ecosystem

• Tools:

- libfdt, dtc https://git.kernel.org/pub/scm/utils/dtc/dtc.git/
- Tries to stay in sync with kernel.org
- Also has it's own additional bindings (doc/device-tree-bindings/)
 - Bootph binding now part of dt-schema properties
 - Binman in discussion, currently U-boot specific
- Very similar to kernel.org (shares the same rules), import devicetree from kernel.org periodically to stay in sync, BUT..
 - Needs a few tweaks
 - Memory constraints
 - Has peripherals supported that kernel doesn't use.
- Licensing: GPL2+

SoC View from the submarine people

DT View from submarine people

- How does the AM625 device tree structure look like?
 - https://source.denx.de/u-boot/u-boot/-/tree/master/arch/arm/dts

U-Boot

Usage in kite people ecosystem

- Source: <u>https://github.com/zephyrproject-rtos/zephyr/tree/main/dts/bindings/</u>
- Has it's own bindings and device tree model.
- Uses C headers as actual link to Zephyr.
- Mix of Native drivers and HAL drivers
- Resource constraints, runtime overheads (See https://www.youtube.com/watch?v=w8GgP3h0M8M)
- Licensing: Apache-2.0

SoC View from the kite people

17

DT View from kite people

friend!

- How does the AM625 device tree structure look like?
- <u>https://github.com/zephyrproject-rtos/zephyr/tree/main/dts/arm/ti</u> <u>https://github.com/zephyrproject-rtos/zephyr/tree/main/dts/arm64/ti</u>

boards/arm64/am62x_a53/phycore_am62x_a53.dts

Texas Instruments

And... other people

- Jailhouse https://github.com/siemens/jailhouse/tree/master/configs/arm64/dts
- Xen
- Trusted Firmware Cortex-A ...

By Hans Bol - <u>http://balat.kikirpa.be/object/119881</u>, Public Domain, https://commons.wikimedia.org/w/index.php?curid=51006153

Likes

- Linux Kernel
 - Bindings are strict
 - Definitions of what can and cannot be integrated is clear
- U-Boot
 - Integration is clean
 - Language remains "same-ish" as kernel
- Zephyr
 - Focus on resource and performance

Dis-Likes

- Linux Kernel
 - Flexibility
 - Performance and Bloat (-EPROBEDEFER?)
- U-Boot
 - Still feels like a bunch of band-aids
- Zephyr
 - Device-tree language is the only common part with the rest of the ecosystem.
 - The actual dts, in reality, looks nothing like U-Boot or Linux Kernel

Solution? Middle Ground?

- System Device tree and Lopper? <u>https://github.com/devicetree-org/lopper</u>
 - <u>https://static.linaro.org/connect/san19/presentations/san19-115.pdf</u>

By ToLo46 - Own work, CC BY-SA 4.0,

Impediments

- Are we willing to adopt lopper in various s/w ecosystems?
- DT Licensing? GPL-2 Vs GPL-2+ Vs Apache-2 ... (and others)
 - Solution might be dual or multiple licensing
- What will be canonical source for DT, domain hints and bindings?
 - Will kernel maintainers be willing to host DT, domain hints and bindings not belonging to kernel?
 - Can dt and bindings move out of kernel tree? (hasn't so far)..
- Can lopper be integrated into all the s/w flows? (zephyr has potential, U-boot, kernel?)

Benefits

- Consolidated tooling
- DT itself is hard for new users. But, users shouldn't need to learn new DT details based on which OS they are on.
- "Universal DT" OR putting "DT in ROM" is not what I expect any time in near future, but hoping to see lesser chaos.

24

Credits and Acknowledgement

- Texas Instruments Inc.
- The Linux Foundation.
- Linaro and OpenAMP members
- Vaishnav Achat, Christopher Friedt, Arnaud Pouliquen, Bill Mills, Tom Rini, Krzysztof Kozlowski, Rob Herring, and so many more..

Q&A

- Contact Information:
 - Nishanth Menon <nm@ti.com>
- Also on IRC NishanthMenon @ libera.chat #linux-ti
- Zephyr discord (#ti channel) <u>https://discord.gg/nG2yqHRg</u>
- BeagleBoard.org discord (#beagleplay channel) <u>https://discord.gg/nUQjwnyw</u>

Learn more about TI products

- https://www.ti.com/linux
- http://opensource.ti.com/
- https://www.ti.com/processors
- https://www.ti.com/edgeai

Why choose TI MCUs and processors?

Scalability

Our products offer scalable performance that can adapt and grow as the needs of your customers evolve.

Efficiency

We design products that extend battery life, maximize performance for every watt expended, and unlock the highest levels of system efficiency.

✓ Affordability

We strive to make innovation accessible to all by creating costeffective products that feature state-of-the-art technology and package designs.

🗸 Availability

Our investment in internal manufacturing capacity provides greater assurance of supply, supporting your growth for decades to come.

