
Livepatch Visibility at Scale
Breno Leitao

leitao@debian.org

Song Liu
song@kernel.org

2023-11-14

mailto:leitao@debian.org
mailto:song@kernel.org

Agenda

● Overview

● Live patch deployment and Visibility
○ How to securely roll out KLPs to millions of machines

● Challenges
○ How to report that a certain machine has a live patch applied

Installing a kernel is slow

● It takes more than 45 days to roll out a new kernel to all machines
○ Draining and un-draining hosts is hard

● It is a trade-off between hosts offline and rollout speed

We find bugs during the rollout

● Different phases of the rollout

● Start with an RC tier

● Validate the current tier
○ Number of crashes, errors

● Proceed to the next tier

Live patch rollout

● An RPM is generated with the module

● Sharded RPM automatic rollout

● One “accumulative” hotfix only
○ hotfix1 → hotfix2 → hotfix3

Phase
N

Phase
N+1

Install the RPM

“Bake” (~3 hours)

4 hours

Monitoring

● Roll out stops automatically if errors are
above a certain threshold

Live patch rollout

Service
Health
Check

Roll out
manager

Prod

Packager
roller

Let’s focus in this part

Health checks

Compare how health new “kernel is”

1) Number of crashes
a) Stop if > 1 crash per 1K host
b) Compare to non-hotfix kernel

2) Number of major alarms
a) Bugs, oops, Warnings, etc

3) Service metrics
a) Application problems, performance

Data sources

● Metrics coming from different
sources

● Kernel team:
○ Kernel crash

■ Coming from crash
○ Warnings/Bugs/Oops/OOMs

■ Coming from netconsole
● Platform

○ Apps Crashdump
■ Coming from random

coredumper
● Workloads

○ Workload Performance
■ Random team metrics

Kernel
crashes

User space
crashes Warnings Disk latency

health
check

Challenges

1) Pass the information that a KLP was applied to all health check
a) Aka Uname

2) Visibility of performance impact

3) Transition failures

Uname challenges

1) All the teams need to read and expose “hotfixes” and export them
a) So we can compare “hotfix” metrics with standard metrics

2) Not easy to get the current KLP that is loaded
a) Get in different surfaces

i) Kernel that crashed

3) Hard to find a KLP is enabled
a) Check if a KLP was loaded and active when the kernel warning happened

Hack#1: Netconsole

● Append -hotfix to kernel version to init_utsname()->release in several places
○ Netconsole
○ Crash dump
○ Workload metrics

● Every hotfix has a macro
○ #define HF_VERSION "hotfixX”
○ Appending it to a printk dictionary

■ msg_add_dict_text(buf + len, size - len, "UNAME", uname_value);

Hack#2: Crashdump

● Kernel crashed
○ Use drgn to parse the list of modules

Hack#3: Running system

● For a running system
○ C++ function that read `/sys/kernel/livepatch`

■ Check for enabled/disabled
■ Checks the directory name and report

● Repeat the same procedure for any other language

● How do we solve this problem upstream?

● Simplify the read from the KLPs applied
○ No need to play `whack-a-mole` to report the KLP applied

Next steps

Upstream possibilities

● Change utsname to append KLP loaded (?)
○ uname would return the KLP loaded
○ Probably not feasible

● Append them to netconsole outputs (?)
○ Create a netconsole option that appends livepatch applied together with the kernel version
○ Done in userspace using Dynamic configuration

■ echo XXXX > /sys/kernel/config/netconsole/cmdline0/dictionary

● Easy to read loaded and active KLPs (?)
○ Create a /sys/kernel/livepatch/active_modules that is easy to load and parse

Visibility of performance impact

● The performance overhead of livepatch is small, but there is always concern
when a relatively hot function is patched

● Measure/estimate the performance impact: tracing
● Built-in solutions with lower overhead

struct klp_func {
...
u64 __percpu

counter;
...

};

Visibility of transition failures

● kpatch prints /proc/<pid>/stack for <pid> that cannot finish transition
● pr_debug in klp_try_switch_task()

● Summary of a transition failure
○ Failed KLP transition: X tasks are always running; Y tasks are

sleeping on being patched function, ...

