Control Flow Integrity on
RISC-V

Deepak Gupta — debug@rivosinc.com

Linux plumbers conference (RISCV MC) - 2023

Memory safety and control flow integrity

- Significant C/C++ code base in vulnerable to memory safety — [1], [2]

- Implication of memory safety issues — control flow can be subverted

- Forward edge: Function pointers or virtual function ptr table live in RW memory
- Return edge: Return addresses (on stack) in RW memory

°/ 203h|fts°/ 20|n°/ 20software %, 20vu|nerab|I|ty°/ 20mitigation.pdf
[2]-https://www.chromium.org/Home/chromium-security/memory-safety/

Linux plumbers conference (RISCV MC) - 2023

Zicfilp - Protects forward control flow

Zicfilp: Enforces all indirect branches must land on 1pad (auipc rd=x0)
- Exceptwhenrs1 == (x1 | x5 | x7)

Label setup in x7 must match label encoded in 1pad instruction on target

New exception (cause = 18) — software-check exception
- *tval = 2, missing 1lpad or label didn’t match

lui x7,0x1 « label setup in x7 auipc x7, <offset> « func_body_bar
jalr ad «— expects landing pad at target foo_lpad_loc jalr x7 < No landing pad expected
func_body_bar: < No label expected

foo_1lpad_loc:
Ipad <label>

func_body_foo:

Linux plumbers conference (RISCV MC) - 2023

Zicfiss

- Zicfiss: Extends architecture with shadow stack (encoding RWX
- Regular stores not allowed. Regular loads allowed.
- Access fault on regular stores.
- Shadow stack memory accesses strictly operate on shadow stack memory
- SS access on RO memory — store page fault
- SS access on RWX or XO memory or RW memory — access fault
- sspopchk can raise software-check exception (*tval = 3)

func_main:
Ipad <label>
sspush x1 « push return address on top of shadow stack
Id x5, offset(sp) « get return address from stack
add sp, sp, offset « adjust stack
sspopchk x5 « pop from top of shadow stack and compare with x5
jr x5 « sspopchk didn’t fault. Return back

Linux plumbers conference (RISCV MC) - 2023

bo10)

Shadow stack & page fault

- Shadow stack is a writable memory but needs protection against stray writes.

- During fork, it becomes read-only (so that COW can be done later)
- For mm any shadow stack access (SS load or SS store) is a COW (thus store) operation

- Following fault behavior for SS accesses
- Read only memory — store page fault
- Not present memory — store page fault
- RW or RWX or X memory — access fault
- Shadow stack instructions operating on RW* or X memory indicates fatality

- Regular loads to shadow stack memory are allowed: useful for backtrace / debugging
- Regular stores to shadow stack memory are access fault: fatal condition and should be SIGSEGV

Linux plumbers conference (RISCV MC) - 2023

Runtime control-flow changes and CFl

- Text patching
- tracing
- breakpoints
- probes

- eBPF

- BPF programs JIT codegen must confirm to kernel CFI policies
- BPF programs attach to kprobes
- Should work as long as kprobes work

*** Anything missed *** ?

Linux plumbers conference (RISCV MC) - 2023

Prolog /w CFl and tracing support

prolog prolog
indirect_call_loc: indirect_call_loc:
Ipad <label>) Ipad <label>
direct_call_loc: tracing enable _, direct_call_loc:
nop auipc x5, <offset_trace handler_direct _call loc>
nop Jalr x5, x5
sspush x1 sspush x1

*** Proposal ***
e Currently tracing enable uses jalr x5, x5 <« should work as is
o landing pad not expected on target trampoline
o Return saved in x5
o Target trampoline uses x5 on return path (rs1 == x5 doesn’t
require landing pad)

e lpad can’t be patched and is always executed

Linux plumbers conference (RISCV MC) - 2023

Breakpoints and text patch /w CFI

Prolog Prolog

indirect_call_loc: breakpoint enable indirect_call_loc:
Ipad <label> > Ipad <label>

direct_call_loc: direct_call_loc:
<first_instr> « ebreak goes here ebreak

e Setting breakpoint can’t patch 1lpad, subsequent instruction is
patched
e Normal breakpoint handling is followed

Linux plumbers conference (RISCV MC) - 2023

Kprobes and kretprobes

kprobes
- Similar to breakpoint handling

kretprobe: probes on function returns

Installs a kprobe on function entry
kprobe handler does pt_regs->ra =arch_rethook_trampoline
- Saves away original ra

arch_rethook_trampoline gets called on return and calls retprobes
- Eventually does jr to original ra

None of this violates Zicfilp or Zicfiss

Linux plumbers conference (RISCV MC) - 2023

Shadow stack: protection flags and creation

Memory (mmap) protection flags and corresponding VMAs

PROT_READ — VM_READ
PROT _WRITE — (VM_READ | VM_WRITE)
PROT_SHADOWSTACK — new protection flag for memory mapping
- PROT_SHADOWSTACK — Only (VM_WRITE)
x86 (and aarch64 too) have introduced VM_SHADOW_STACK (stealing VM_ARCH_5 bit)
On riscv #define VM_SHADOW_STACK VM_WRITE

User control on shadow stack creation
*** Proposal ***

Shadow stack is dedicated to store return addresses. Not worth it to have protection flag exposed to user
x86 already have map_shadow_stack in mainline. aarch64 following same. «— RISCV to do same

LKML discussions on topic

https://lore.kernel.org/lkml/20230822-arm64-gcs-v5-11-9ef181dd6324 @kernel.org/
https://lore.kernel.org/lkml/20230613001108.3040476-15-rick.p.edgecombe@intel.com/
https://www.spinics.net/lists/arm-kernel/msg1070930.html
https://lore.kernel.org/lkml/20230613001108.3040476-35-rick.p.edgecombe@intel.com/

Linux plumbers conference (RISCV MC) - 2023

10

RISC-V user mode CFI| — enabling

- Kernel can’'t assume about inbuilt CFI support in all object files in address space
- Decision to enable shadow stack (SS) and landing pad (LP) is left to 1d . so in user mode
- Following x86 and aarch64 direction

*** Two paths here ***

Id.so starts life without SS and LP Id.so starts life with SS and LP
- invoke prctls to enable CFI if all objects support CFI - invoke prctls to disable CFl if any object doesn'’t
support CFl

LKML discussions on topic
- https://lore.kernel.org/all/20220130211838.8382-1-rick.p.edgecombe@intel.com/

- https://Ikml.iu.edu/hypermail/linux/kernel/2303.1/04556.html
- https://lore.kernel.org/Ikml/CAHk-=wgP5mk3poVeejw16Asbid0ghDt4okHnWaWKLBKkRhQntRA@mail.gmail.com/

Linux plumbers conference (RISCV MC) - 2023

11

RISC-V user mode CFI| — glibc enabling

Tunability options

- Some application may still want to disable CFI

- Some applications may want CF| but don’t know if all dependent objects have CFI support or not
- May want to start application with CFI support but may want to disable if dlopen to non-CFI object file
- May want to start application with CFI support and want to exit if dlopen to non-CFI object file

*** Proposal ***

- Follow x86 glibc tunables for shadow stack and indirect branch tracking
(https://www.gnu.org/software/libc/manual/html_node/Hardware-Capability-Tunables.html)
- glibc.cpu.riscv_lIp for landing pads and glibc.cpu.riscv_ss for shadow stack
- On — Strict on and any dlopen to a shared library with no cfi support leads to exit
- Off — Off irrespective of ELF bit marker or shared libraries
- Permissive — Any incoming object in address space with no support will turn the feature off

Linux plumbers conference (RISCV MC) - 2023

12

Discussion / Q&A

Linux plumbers conference (RISCV MC) - 2023

13

