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A challenge

• The task scheduler can have a large impact on application performance.

• But the task scheduler is buried deep in the OS...

• How to understand what the task scheduler is doing?
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Some help available

trace-cmd: Collects ftrace information, including scheduling events.

trace-cmd record -e sched -q -o trace.dat ./mycommand

Sample trace (trace-cmd report trace.dat):
C1 CompilerThre -166659 [026] 9539.524366: sched_wakeup: C1 CompilerThre:166654 [120] success=1 CPU:062

<idle>-0 [062] 9539.524369: sched_switch: swapper/62:0 [120] R ==> C1 CompilerThre:166654 [120]
C1 CompilerThre -166659 [026] 9539.524369: sched_switch: C1 CompilerThre:166659 [120] S ==> swapper/26:0 [120]

java -166654 [062] 9539.524372: sched_waking: comm=C1 CompilerThre pid=166660 prio=120 target_cpu=028
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Some help available

kernelshark: Graphical front end for trace-cmd data.

Hard to get an overview, of e.g. 128 cores.
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Our target: Large multicore servers

Goals for a trace-visualization tool:

• See activity on all cores at once.

• Produce files that can be shared (pdfs).

• Caveat: Interactivity (e.g., zooming) completely abandoned.
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Our tools

• dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

• running_waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.

• stepper: Step-by-step execution of all tasks on all cores.

• hostguest: Activity on vcpus + status of vcpus as running or waiting.

All publicly available.
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Example

NAS benchmark suite: “The NAS Parallel Benchmarks (NPB) are a small set of
programs designed to help evaluate the performance of parallel supercomputers. The
benchmarks are derived from computational fluid dynamics (CFD) applications...”

Our focus:
UA: “Unstructured Adaptive mesh, dynamic and irregular memory access”

• N tasks on N cores.
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Getting to know the benchmark

A common approach for scientific code is to pin tasks to cores:
(All tests on a 4-socket machine with 128 hardware threads.)
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runs (sorted by increasing runtime)
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pinned in socket order
pinned to a socket
pinned to a fixed core

Suggests that memory locality impacts performance.
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UA without pinning, before and after EEVDF (Linux v6.5 and v6.6)
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A slow run in v6.5 (dat2graph)
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A slow run in v6.6 (dat2graph)
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A slow run in v6.6 (dat2graph)
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Impact of gaps

The impact of gaps depends on the reason why they are present:

• Tasks have nothing to do.
– No performance impact.

• Some cores are overloaded while others are idle (work conservation issue).
– Potential slowdown.
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Detecting overloads: Focus on UA threads (running_waiting)
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Detecting overloads: Focus on UA threads, by socket (running_waiting)
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Maybe NUMA balancing is the culprit?

16



Detecting overloads: Focus on UA threads, by socket (running_waiting)

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket0

0

10

20

30

n
u

m
b

er
 o

f 
th

re
a
d

s

all threads running threads

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket1

0

10

20

30

n
u

m
b

er
 o

f 
th

re
a
d

s

all threads running threads

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket2

0

10

20

30

n
u

m
b

er
 o

f 
th

re
a
d

s

all threads running threads

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket3

0

10

20

30

n
u

m
b

er
 o

f 
th

re
a
d

s

all threads running threads

Maybe NUMA balancing is the culprit?
16



NUMA balancing in v6.5 (dat2graph --events)
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NUMA balancing in v6.6 (dat2graph --events)
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What’s new with EEVDF?

Time slices are now mostly one tick.
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Does it matter that they are all one tick? Or that they are all the same?
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v6.5, v6.5 with fixed time slices, and v6.6
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And that’s where the story ends...
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Discussion

• What goes wrong with UA?

• What information is useful to visualize?

• How to organize it?

• How to visualize new information (e.g., timeslice)?
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A proposal

dat2graph:timeslice:
An edge between task start and
stop.
@dat2graph@
comm c1, c2, c3;
pid p1, p2 != 0, p3;
time t1, t2;
core c;
@@

sched_switch(c1,p1,_,c2,p2)@t1@c
...
sched_switch(c2,p2,_,c3,p3)@t2@c
==> edge(point(t1,c),point(t2,c),color(p2))
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@timeslice@
comm c1, c2, c3;
pid p1, p2 != 0, p3;
time t1, t2;
core c;
reason r;
@@

sched_switch(c1,p1,_,c2,p2)@t1@c
...
sched_switch(c2,p2,r,c3,p3)@t2@c
==> collect(r, t2 - t1)
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A proposal

running_waiting: Keep a count of running tasks.

@running_waiting@
comm c; pid p; time t;
@@

sched_switch(_,0,_,c,p)@t
==> running[t] = ++running_count

@running_waiting@
comm c; pid p; time t;
@@

sched_switch(c,p,_,_,0)@t
==> running[t] = --running_count

Waiting is more complex, because a task can be waiting for multiple reasons.
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An alternative

Focus on task states, rather than events.

@running_waiting@
comm c; pid p != 0; time t;
@@

In(running(c,p))@t
==> running[t] = ++running_count;

waiting[t] = ++waiting_count;

@running_waiting@
comm c; pid p != 0; time t;
@@

Out(running(c,p))@t
==> running[t] = --running_count;

waiting[t] = --waiting_count;

@running_waiting@
comm c; pid p; time t;
@@

In(waiting(c,p))@t
==> waiting[t] = ++waiting_count

@running_waiting@
comm c; pid p; time t;
@@

Out(waiting(c,p))@t
==> waiting[t] = --waiting_count;
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Availability

• dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

• running_waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.

• stepper: Step-by-step execution of all tasks on all cores.

• hostguest: Activity on vcpus + status of vcpus as running or waiting.

https://gitlab.inria.fr/schedgraph/schedgraph.git
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