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A challenge

= The task scheduler can have a large impact on application performance.

= But the task scheduler is buried deep in the OS...



A challenge

= The task scheduler can have a large impact on application performance.
= But the task scheduler is buried deep in the OS...

= How to understand what the task scheduler is doing?



Some help available

trace-cmd: Collects ftrace information, including scheduling events.

trace-cmd record -e sched -q -o trace.dat ./mycommand

Sample trace (trace-cmd report trace.dat):

C1 CompilerThre-166659 [026]
<idle>-0 [062]
C1 CompilerThre-166659 [026]
java-166654 [062]

9539
9539

9539.
9539.

.524366:
.524369:
524369:
524372:

sched_wakeup:
sched_switch:
sched_switch:
sched_waking:

Cl CompilerThre:166654 [120] success=1 CPU:062
swapper/62:0 [120] R ==> C1 CompilerThre:166654 [120]
Cl1 CompilerThre:166659 [120] S ==> swapper/26:0 [120]
comm=C1 CompilerThre pid=166660 prio=120 target_cpu=028



Some help available

kernelshark: Graphical front end for trace-cmd data.
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# CPU__ Time Stamp Task PID___Latency Event

0 52 | 3153502.. tmpl72c90sh 985138 schedsched_process_exec

1 52 3153502 tmpl72c90.sh | 985138 d. sched/sched_waking

2 52 3153592 tmpl72c90.sh | 985138 d. schedisched_wake_idle_without_ipi
3 52 3153592 tmpl72c90sh | 985138  d. sched/sched_switch

4 39 3153502 <ide> [ an.

filename=/tmp/tmp172c90.5h pid=985138 old_pid=985138
comm=nscd pid=1145 prio=120 target_cpu=039

cpu=39

tmp172¢90.5h:985138 [120] S ==> swapper/52:0 (120]
nscd:1145 [120] success=1 CPU:039




Some help available

kernelshark: Graphical front end for trace-cmd data.
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# CPU__ Time Stamp Task PID___Latency Event =
0 52 | 3153502.. tmpl72c90sh 985138 schedsched_process_exec filename=/tmp/tmp172c90.5h pid=985138 old_pid=985138

1 52 3153502 tmpl72c90.sh | 985138 d. sched/sched_waking comm=nscd pid=1145 prio=120 target_cpu=039

2 52 3153592 tmpl72c90.sh | 985138 d. sched/sched_wake_idle_without_ipi cpu=39

3 52 3153592 tmpl72c90sh | 985138  d. sched/sched_switch tmp172¢90.5h:985138 [120] S ==> swapper/52:0 (120]

4 39 3 <idle> [ an. schedisch

wakeup nscd:114¢

cess=1 CPU

Hard to get an overview, of e.g. 128 cores.



Our target: Large multicore servers

Goals for a trace-visualization tool:

= See activity on all cores at once.
= Produce files that can be shared (pdfs).

» Caveat: Interactivity (e.g., zooming) completely abandoned.



= dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

» running waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.
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= stepper: Step-by-step execution of all tasks on all cores.

= hostguest: Activity on vcpus + status of vcpus as running or waiting.



= dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

» running waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.

= stepper: Step-by-step execution of all tasks on all cores.

= hostguest: Activity on vcpus + status of vcpus as running or waiting.

All publicly available.



NAS benchmark suite: “The NAS Parallel Benchmarks (NPB) are a small set of
programs designed to help evaluate the performance of parallel supercomputers. The
benchmarks are derived from computational fluid dynamics (CFD) applications...”

Our focus:
UA: “Unstructured Adaptive mesh, dynamic and irregular memory access”

= /\/ tasks on N cores.



Getting to know the benchmark

A common approach for scientific code is to pin tasks to cores:
(All tests on a 4-socket machine with 128 hardware threads.)

40 | |l pinned in socket order |
I pinned to a socket
I pinned to a fixed core

20 .
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runs (sorted by increasing runtime)



Getting to know the benchmark

A common approach for scientific code is to pin tasks to cores:
(All tests on a 4-socket machine with 128 hardware threads.)

40 | |l pinned in socket order |
I pinned to a socket
—‘é’ I pinned to a fixed core
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I I I I
12345678 91011121314151617181920
runs (sorted by increasing runtime)

Suggests that memory locality impacts performance.
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A slow run in v6.5 (dat2graph)
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A slow run in v6.5 (dat2graph)
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run in v6.6 (dat2graph)
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A slow run in v6.6 (dat2graph)
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ua.C.x_yeti-3_6.6.0_performance_10 socketorder, duration: 83.800233 seconds
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Impact of gaps

The impact of gaps depends on the reason why they are present:

= Tasks have nothing to do.

— No performance impact.

= Some cores are overloaded while others are idle (work conservation issue).

— Potential slowdown.
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Detecting overloads: Focus on UA threads (running_waiting)
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Detecting overloads: Focus on UA threads, by socket (running_waiting
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Detecting overloads: Focus on UA threads, by socket (running_waiting)
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Maybe NUMA balancing is the culprit?



NUMA balancing in v6.5 (dat2graph --events)
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wake_idle_without_ipi (10065)
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—————— process fork
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NUMA balancing in v6.6 (dat2graph --events)
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What'’s new with EEVDF?

Time slices are now mostly one tick.
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Does it matter that they are all one tick? Or that they are all the same? 19



v6.5, v6.5 with fixed time slices, and v6.6
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v6.5, v6.5 with fixed time slices, and v6.6
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And that's where the story ends...
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Discussion

= What goes wrong with UA?
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Discussion

= What goes wrong with UA?
= What information is useful to visualize?
= How to organize it?

= How to visualize new information (e.g., timeslice)?
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A proposal

dat2graph:

An edge between task start and
stop.

@dat2graph@

comm cl, c2, c3;

pid pl, p2 != 0, p3;

time t1, t2;

core cCj;

ee

sched_switch(cl,pl,_,c2,p2)0tlGc

sched_switch(c2,p2,_,c3,p3)0t20c
==> edge (point(tl,c),point(t2,c),color(p2))
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A proposal

dat2graph:

An edge between task start and
stop.

@dat2graph@

comm cl, c2, c3;

pid pl, p2 != 0, p3;

time t1, t2;

core cCj;

ee

sched_switch(cl,pl,_,c2,p2)0tlGc

sched_switch(c2,p2,_,c3,p3)0t20c
==> edge (point(tl,c),point(t2,c),color(p2))

timeslice:
Collect time between task start and
stop.

QtimesliceQ

comm cl, c2, c3;

pid p1, p2 != 0, p3;
time t1, t2;
core c;

reason r;
@@

sched_switch(cl,pl,_,c2,p2)0tlGc

sched_switch(c2,p2,r,c3,p3)0t20c
==> collect(r, t2 - t1)
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A proposal

running__waiting: Keep a count of running tasks.

@running_waiting@
comm c; pid p; time t;
Q@

sched_switch(_,0,_,c,p)0t
==> running[t] = ++running_count

@running_waiting@
comm c; pid p; time t;

Q@

sched_switch(c,p,_,_,0)0t
==> running[t] = --running_count
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A proposal

running__waiting: Keep a count of running tasks.

@running_waiting@
comm c; pid p; time t;
Q@

sched_switch(_,0,_,c,p)0t
==> running[t] = ++running_count

@running_waiting@

comm c; pid p; time t;

Q@
sched_switch(c,p,_,_,0)0t
==> running[t] = --running_count

Waiting is more complex, because a task can be waiting for multiple reasons.
23



An alternative

Focus on task states, rather than events.

@running_waiting@
comm c; pid p != 0; time t;
(¢¢]

In(running(c,p))0@t
==> running([t] = ++running_count;
waiting[t] = ++waiting_count;

@running_waiting@
comm c; pid p != 0; time t;
Qe

Out (running(c,p))0t
==> running([t] = --running_count;

waiting[t] = --waiting_count;

Q@running_waiting@
comm c; pid p; time t;
Qe

In(waiting(c,p))@t

==> waiting[t] = ++waiting_count

@running_waiting@
comm c; pid p; time t;
@@

Out (waiting(c,p))0t
==> waiting[t] = --waiting_count;
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Availability

= dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

» running waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.

= stepper: Step-by-step execution of all tasks on all cores.

= hostguest: Activity on vcpus + status of vcpus as running or waiting.

https://gitlab.inria.fr/schedgraph/schedgraph.git

25



