Graphing Tools for Scheduler Tracing

Julia Lawall, Inria

November 14, 2023

A challenge

= The task scheduler can have a large impact on application performance.

= But the task scheduler is buried deep in the OS...

A challenge

= The task scheduler can have a large impact on application performance.
= But the task scheduler is buried deep in the OS...

= How to understand what the task scheduler is doing?

Some help available

trace-cmd: Collects ftrace information, including scheduling events.

trace-cmd record -e sched -q -o trace.dat ./mycommand

Sample trace (trace-cmd report trace.dat):

C1 CompilerThre-166659 [026]
<idle>-0 [062]
C1 CompilerThre-166659 [026]
java-166654 [062]

9539
9539

9539.
9539.

.524366:
.524369:
524369:
524372:

sched_wakeup:
sched_switch:
sched_switch:
sched_waking:

Cl CompilerThre:166654 [120] success=1 CPU:062
swapper/62:0 [120] R ==> C1 CompilerThre:166654 [120]
Cl1 CompilerThre:166659 [120] S ==> swapper/26:0 [120]
comm=C1 CompilerThre pid=166660 prio=120 target_cpu=028

Some help available

kernelshark: Graphical front end for trace-cmd data.

File Fiter Plots Tools Help
Pointer: [3163.915176
)

Warker 8 A8 Detta

3153.592406 3158.744107 3163.895809
r T 1

CPUO

CPU1

Search: Column[#

~) contains -~

¥Graph follows,

Next| Prev.

CPU__ Time Stamp Task PID___Latency Event

0 52 | 3153502.. tmpl72c90sh 985138 schedsched_process_exec

1 52 3153502 tmpl72c90.sh | 985138 d. sched/sched_waking

2 52 3153592 tmpl72c90.sh | 985138 d. schedisched_wake_idle_without_ipi
3 52 3153592 tmpl72c90sh | 985138 d. sched/sched_switch

4 39 3153502 <ide> [an.

filename=/tmp/tmp172c90.5h pid=985138 old_pid=985138
comm=nscd pid=1145 prio=120 target_cpu=039

cpu=39

tmp172¢90.5h:985138 [120] S ==> swapper/52:0 (120]
nscd:1145 [120] success=1 CPU:039

Some help available

kernelshark: Graphical front end for trace-cmd data.

File Fiter Plots Tools Help

Pointer: [3163.915176

3 €3 18 6| [0 Warker 8 A8 Detta

3153.592406 3158.744107 3163.895809
T 1

CPUO

CPU1

Search: Column[# -

contains -~ Next|Prev) [¥IGraph follows

CPU__ Time Stamp Task PID___Latency Event =
0 52 | 3153502.. tmpl72c90sh 985138 schedsched_process_exec filename=/tmp/tmp172c90.5h pid=985138 old_pid=985138

1 52 3153502 tmpl72c90.sh | 985138 d. sched/sched_waking comm=nscd pid=1145 prio=120 target_cpu=039

2 52 3153592 tmpl72c90.sh | 985138 d. sched/sched_wake_idle_without_ipi cpu=39

3 52 3153592 tmpl72c90sh | 985138 d. sched/sched_switch tmp172¢90.5h:985138 [120] S ==> swapper/52:0 (120]

4 39 3 <idle> [an. schedisch

wakeup nscd:114¢

cess=1 CPU

Hard to get an overview, of e.g. 128 cores.

Our target: Large multicore servers

Goals for a trace-visualization tool:

= See activity on all cores at once.
= Produce files that can be shared (pdfs).

» Caveat: Interactivity (e.g., zooming) completely abandoned.

= dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

» running waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.

= dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

» running waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.

= stepper: Step-by-step execution of all tasks on all cores.

= hostguest: Activity on vcpus + status of vcpus as running or waiting.

= dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

» running waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.

= stepper: Step-by-step execution of all tasks on all cores.

= hostguest: Activity on vcpus + status of vcpus as running or waiting.

All publicly available.

NAS benchmark suite: “The NAS Parallel Benchmarks (NPB) are a small set of
programs designed to help evaluate the performance of parallel supercomputers. The
benchmarks are derived from computational fluid dynamics (CFD) applications...”

Our focus:
UA: “Unstructured Adaptive mesh, dynamic and irregular memory access”

= /\/ tasks on N cores.

Getting to know the benchmark

A common approach for scientific code is to pin tasks to cores:
(All tests on a 4-socket machine with 128 hardware threads.)

40 | |l pinned in socket order |
I pinned to a socket
I pinned to a fixed core

20 .

seconds

I I I I
12345678 91011121314151617181920
runs (sorted by increasing runtime)

Getting to know the benchmark

A common approach for scientific code is to pin tasks to cores:
(All tests on a 4-socket machine with 128 hardware threads.)

40 | |l pinned in socket order |
I pinned to a socket
—‘é’ I pinned to a fixed core
S 20 1
(2]
0 [[[[[[[[[[[[[[[[

I I I I
12345678 91011121314151617181920
runs (sorted by increasing runtime)

Suggests that memory locality impacts performance.

00000
® ©

A slow run in v6.5 (dat2graph)

100

50

core (socket order)

0 10 20 30
ua.C.x_yeti-3_6.5.0_performance_2 socketorder, duration: 35.277310 seconds

10

A slow run in v6.5 (dat2graph)

core (socket order)

0 10 20 30
ua.C.x_yeti-3_6.5.0_performance_2 socketorder, duration: 35.277310 seconds

11

run in v6.6 (dat2graph)

50

core (socket order)

0 %7 = = : =S —
0 20 40 60 80
ua.C.x_yeti-3_6.6.0_performance_10 socketorder, duration: 83.800233 seconds

12

A slow run in v6.6 (dat2graph)

50

core (socket order)

ua.C.x_yeti-3_6.6.0_performance_10 socketorder, duration: 83.800233 seconds

13

Impact of gaps

The impact of gaps depends on the reason why they are present:

= Tasks have nothing to do.

— No performance impact.

= Some cores are overloaded while others are idle (work conservation issue).

— Potential slowdown.

14

Detecting overloads: Focus on UA threads (running_waiting)

all threads running threads
\lmm-'v U”vln ””r T
100
@
<
1
@
=1
S
-
S
=l
@
2
£ 50
=
=
0 T T T T
0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua

15

Detecting overloads: Focus on UA threads, by socket (running_waiting

—— all threads —— running threads —— all threads —— running threads
I :
: = i A A B A
P
g LA A A L i I
z E
] =l
5 0 5y
2 g
: 5
£ €
= 04 = 104
= =
) o © 5 x X 0 Py

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket0 ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket1

—— all threads —— running threads —— all threads —— running threads
i . L Y I B B B
= k-1
H g
z z
S] = 0
2, =
= =
2 =
: 5
= =
ES E]
= =

) o © % X X X 0

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket2 ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket3

16

Detecting overloads: Focus on UA threads, by socket (running_waiting)

—— all threads —— running threads ——all threads —— running threads

T

4) e e

204

number of threads

number of threads

10

T T T T
) & ®)

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket0

T T T
@)

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socketl

—— all threads —— running threads ——all threads —— running threads

e R L R L : P‘m HTW."“\I" “‘ C""‘\‘ "}‘ “‘ "C “ '”'

T T T T T T T T
B & ® 0

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket2

number of threads
number of threads

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket3

Maybe NUMA balancing is the culprit?

NUMA balancing in v6.5 (dat2graph --events)

wakeup (17503)
wake_idle_without_ipi (10065)
waking (wakee, 17502)
migrate_task
(wake 292, 1b 927, numa 593)
on-socket
unblock placement
wakeup_new
fork
—————— process fork

off-socket

unblock placement

off-socket

load balance
——» numa balancing (593)

. on-socket
load balance

core (socket order)

0 10 20 30
ua.C.x_yeti-3_6.5.0_performance_2 socketorder, duration: 35.277310 seconds

17

NUMA balancing in v6.6 (dat2graph --events)

wakeup (12077)
wake_idle_without_ipi (13286)
waking (wakee, 12076)
i : : s E : migrate_task
(wake 125, Ib 1436, numa 459)
3 = : e o : : ; a on-socket
- - = === = = 2 load balance
st ——» numa balancing (459)
.. on-socket
unblock placement
off-socket
unblock placement
wakeup_new
fork
—————— process fork
A . off-socket
load balance

(iR

100

core (socket order)

ua.C.x_yeti-3_6.6.0_performance_10 socketorder, duration: 83.800233 seconds

18

What'’s new with EEVDF?

Time slices are now mostly one tick.

time (sec)

time (sec)

0.015
0.010 slice (24792)

: sleepslice (17640)
0.005 yieldslice (7152)
0.000 - — 1 - . T 1 T T T T T T T T T T

0 5000 10000 15000 20000
ua.C.x_yeti-3_6.5.0_performance_2, time (sec), duration: 35.277310, count
0.015
slice (39546)

.01 s
0010 sleepslice (12226)
0.005 yieldslice (27320)
0.000 e e L

0 10000 20000 30000

ua.C.x_yeti-3_6.6.0_performance_10, time (sec), duration: 83.800233, count

19

What'’s new with EEVDF?

Time slices are now mostly one tick.

time (sec)

time (sec)

0.015
0.010 slice (24792)

: sleepslice (17640)
0.005 yieldslice (7152)
000 +-——"—"""—"—"7T — 7 T T T T T

0 5000 10000 15000 20000
ua.C.x_yeti-3_6.5.0_performance_2, time (sec), duration: 35.277310, count
0.015
slice (39546)

.01 s
C0L0 sleepslice (12226)
0.005 yieldslice (27320)
LU0 iy I e s

0 10000 20000 30000

ua.C.x_yeti-3_6.6.0_performance_10, time (sec), duration: 83.800233, count

Does it matter that they are all one tick? 19

What'’s new with EEVDF?

Time slices are now mostly one tick.

0.015
% 0,010 slice (24792)
Py sleepslice (17640)
-E 0.005 yieldslice (7152)
000 +-——"—"""—"—"7T — 7 T T T T T
0 5000 10000 15000 20000
ua.C.x_yeti-3_6.5.0_performance_2, time (sec), duration: 35.277310, count
0.015
% 0.010 slice(3?546)
o sleepslice (12226)
_E 0.005 yieldslice (27320)
LU0 iy I e s
0 10000 20000 30000

ua.C.x_yeti-3_6.6.0_performance_10, time (sec), duration: 83.800233, count

Does it matter that they are all one tick? Or that they are all the same? 19

v6.5, v6.5 with fixed time slices, and v6.6

1001 165 i
16.5ts1
G [6.5ts8
S 50| |16.6 ‘ i
9
| e I H‘
0O 5 10 15 20 25 30 35 40 45 50

runs (sorted by increasing runtime)

20

v6.5, v6.5 with fixed time slices, and v6.6

1001 165 i
16.5ts1
G [6.5ts8
S 50| |16.6 ‘ i
9
| e I H‘
0O 5 10 15 20 25 30 35 40 45 50

runs (sorted by increasing runtime)

And that's where the story ends...

20

Discussion

= What goes wrong with UA?

21

Discussion

= What goes wrong with UA?
= What information is useful to visualize?
= How to organize it?

= How to visualize new information (e.g., timeslice)?

21

A proposal

dat2graph:

An edge between task start and
stop.

@dat2graph@

comm cl, c2, c3;

pid pl, p2 != 0, p3;

time t1, t2;

core cCj;

ee

sched_switch(cl,pl,_,c2,p2)0tlGc

sched_switch(c2,p2,_,c3,p3)0t20c
==> edge (point(tl,c),point(t2,c),color(p2))

22

A proposal

dat2graph:

An edge between task start and
stop.

@dat2graph@

comm cl, c2, c3;

pid pl, p2 != 0, p3;

time t1, t2;

core cCj;

ee

sched_switch(cl,pl,_,c2,p2)0tlGc

sched_switch(c2,p2,_,c3,p3)0t20c
==> edge (point(tl,c),point(t2,c),color(p2))

timeslice:
Collect time between task start and
stop.

QtimesliceQ

comm cl, c2, c3;

pid p1, p2 != 0, p3;
time t1, t2;
core c;

reason r;
@@

sched_switch(cl,pl,_,c2,p2)0tlGc

sched_switch(c2,p2,r,c3,p3)0t20c
==> collect(r, t2 - t1)

22

A proposal

running__waiting: Keep a count of running tasks.

@running_waiting@
comm c; pid p; time t;
Q@

sched_switch(_,0,_,c,p)0t
==> running[t] = ++running_count

@running_waiting@
comm c; pid p; time t;

Q@

sched_switch(c,p,_,_,0)0t
==> running[t] = --running_count

23

A proposal

running__waiting: Keep a count of running tasks.

@running_waiting@
comm c; pid p; time t;
Q@

sched_switch(_,0,_,c,p)0t
==> running[t] = ++running_count

@running_waiting@

comm c; pid p; time t;

Q@
sched_switch(c,p,_,_,0)0t
==> running[t] = --running_count

Waiting is more complex, because a task can be waiting for multiple reasons.
23

An alternative

Focus on task states, rather than events.

@running_waiting@
comm c; pid p != 0; time t;
(¢¢]

In(running(c,p))0@t
==> running([t] = ++running_count;
waiting[t] = ++waiting_count;

@running_waiting@
comm c; pid p != 0; time t;
Qe

Out (running(c,p))0t
==> running([t] = --running_count;

waiting[t] = --waiting_count;

Q@running_waiting@
comm c; pid p; time t;
Qe

In(waiting(c,p))@t

==> waiting[t] = ++waiting_count

@running_waiting@
comm c; pid p; time t;
@@

Out (waiting(c,p))0t
==> waiting[t] = --waiting_count;

24

Availability

= dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

» running waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.

= stepper: Step-by-step execution of all tasks on all cores.

= hostguest: Activity on vcpus + status of vcpus as running or waiting.

https://gitlab.inria.fr/schedgraph/schedgraph.git

25

