
Graphing Tools for Scheduler Tracing

Julia Lawall, Inria
November 14, 2023

1



A challenge

• The task scheduler can have a large impact on application performance.

• But the task scheduler is buried deep in the OS...

• How to understand what the task scheduler is doing?

2



A challenge

• The task scheduler can have a large impact on application performance.

• But the task scheduler is buried deep in the OS...

• How to understand what the task scheduler is doing?

2



Some help available

trace-cmd: Collects ftrace information, including scheduling events.

trace-cmd record -e sched -q -o trace.dat ./mycommand

Sample trace (trace-cmd report trace.dat):
C1 CompilerThre -166659 [026] 9539.524366: sched_wakeup: C1 CompilerThre:166654 [120] success=1 CPU:062

<idle>-0 [062] 9539.524369: sched_switch: swapper/62:0 [120] R ==> C1 CompilerThre:166654 [120]
C1 CompilerThre -166659 [026] 9539.524369: sched_switch: C1 CompilerThre:166659 [120] S ==> swapper/26:0 [120]

java -166654 [062] 9539.524372: sched_waking: comm=C1 CompilerThre pid=166660 prio=120 target_cpu=028

3



Some help available

kernelshark: Graphical front end for trace-cmd data.

Hard to get an overview, of e.g. 128 cores.

4



Some help available

kernelshark: Graphical front end for trace-cmd data.

Hard to get an overview, of e.g. 128 cores.
4



Our target: Large multicore servers

Goals for a trace-visualization tool:

• See activity on all cores at once.

• Produce files that can be shared (pdfs).

• Caveat: Interactivity (e.g., zooming) completely abandoned.

5



Our tools

• dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

• running_waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.

• stepper: Step-by-step execution of all tasks on all cores.

• hostguest: Activity on vcpus + status of vcpus as running or waiting.

All publicly available.

6



Our tools

• dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

• running_waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.

• stepper: Step-by-step execution of all tasks on all cores.

• hostguest: Activity on vcpus + status of vcpus as running or waiting.

All publicly available.

6



Our tools

• dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

• running_waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.

• stepper: Step-by-step execution of all tasks on all cores.

• hostguest: Activity on vcpus + status of vcpus as running or waiting.

All publicly available.

6



Example

NAS benchmark suite: “The NAS Parallel Benchmarks (NPB) are a small set of
programs designed to help evaluate the performance of parallel supercomputers. The
benchmarks are derived from computational fluid dynamics (CFD) applications...”

Our focus:
UA: “Unstructured Adaptive mesh, dynamic and irregular memory access”

• N tasks on N cores.

7



Getting to know the benchmark

A common approach for scientific code is to pin tasks to cores:
(All tests on a 4-socket machine with 128 hardware threads.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

runs (sorted by increasing runtime)

se
co

nd
s

pinned in socket order
pinned to a socket
pinned to a fixed core

Suggests that memory locality impacts performance.

8



Getting to know the benchmark

A common approach for scientific code is to pin tasks to cores:
(All tests on a 4-socket machine with 128 hardware threads.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

runs (sorted by increasing runtime)

se
co

nd
s

pinned in socket order
pinned to a socket
pinned to a fixed core

Suggests that memory locality impacts performance. 8



UA without pinning, before and after EEVDF (Linux v6.5 and v6.6)

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

runs (sorted by increasing runtime)

se
co

nd
s

6.5
6.6

9



A slow run in v6.5 (dat2graph)

0 10 20 30

ua.C.x_yeti-3_6.5.0_performance_2 socketorder, duration: 35.277310 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

10



A slow run in v6.5 (dat2graph)

0 10 20 30
ua.C.x_yeti-3_6.5.0_performance_2 socketorder, duration: 35.277310 seconds

0

50

100

co
re

 (s
oc

ke
t o

rd
er

)

11



A slow run in v6.6 (dat2graph)

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10 socketorder, duration: 83.800233 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

12



A slow run in v6.6 (dat2graph)

0 20 40 60 80
ua.C.x_yeti-3_6.6.0_performance_10 socketorder, duration: 83.800233 seconds

0

50

100

co
re

 (s
oc

ke
t o

rd
er

)

13



Impact of gaps

The impact of gaps depends on the reason why they are present:

• Tasks have nothing to do.
– No performance impact.

• Some cores are overloaded while others are idle (work conservation issue).
– Potential slowdown.

14



Detecting overloads: Focus on UA threads (running_waiting)

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua

0

50

100

n
u

m
b

er
 o

f 
th

re
a

d
s

all threads running threads

15



Detecting overloads: Focus on UA threads, by socket (running_waiting)

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket0

0

10

20

30

n
u

m
b

er
 o

f 
th

re
a
d

s

all threads running threads

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket1

0

10

20

30

n
u

m
b

er
 o

f 
th

re
a
d

s

all threads running threads

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket2

0

10

20

30

n
u

m
b

er
 o

f 
th

re
a
d

s

all threads running threads

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket3

0

10

20

30

n
u

m
b

er
 o

f 
th

re
a
d

s

all threads running threads

Maybe NUMA balancing is the culprit?

16



Detecting overloads: Focus on UA threads, by socket (running_waiting)

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket0

0

10

20

30

n
u

m
b

er
 o

f 
th

re
a
d

s

all threads running threads

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket1

0

10

20

30

n
u

m
b

er
 o

f 
th

re
a
d

s

all threads running threads

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket2

0

10

20

30

n
u

m
b

er
 o

f 
th

re
a
d

s

all threads running threads

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10_rw_from_ua_socket3

0

10

20

30

n
u

m
b

er
 o

f 
th

re
a
d

s

all threads running threads

Maybe NUMA balancing is the culprit?
16



NUMA balancing in v6.5 (dat2graph --events)

0 10 20 30

ua.C.x_yeti-3_6.5.0_performance_2 socketorder, duration: 35.277310 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

wakeup (17503)

wake_idle_without_ipi (10065)

waking (wakee, 17502)

migrate_task 

(wake 292, lb 927, numa 593)

on-socket 

unblock placement

wakeup_new

fork

process fork

off-socket 

unblock placement

off-socket 

load balance

numa balancing (593)

on-socket 

load balance

17



NUMA balancing in v6.6 (dat2graph --events)

0 20 40 60 80

ua.C.x_yeti-3_6.6.0_performance_10 socketorder, duration: 83.800233 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

wakeup (12077)

wake_idle_without_ipi (13286)

waking (wakee, 12076)

migrate_task 

(wake 125, lb 1436, numa 459)

on-socket 

load balance

numa balancing (459)

on-socket 

unblock placement

off-socket 

unblock placement

wakeup_new

fork

process fork

off-socket 

load balance

18



What’s new with EEVDF?

Time slices are now mostly one tick.

0 5000 10000 15000 20000

ua.C.x_yeti-3_6.5.0_performance_2, time (sec), duration: 35.277310, count

0.000

0.005

0.010

0.015

ti
m

e 
(s

ec
)

slice (24792)

sleepslice (17640)

yieldslice (7152)

0 10000 20000 30000

ua.C.x_yeti-3_6.6.0_performance_10, time (sec), duration: 83.800233, count

0.000

0.005

0.010

0.015

ti
m

e 
(s

ec
)

slice (39546)

sleepslice (12226)

yieldslice (27320)

Does it matter that they are all one tick? Or that they are all the same?

19



What’s new with EEVDF?

Time slices are now mostly one tick.

0 5000 10000 15000 20000

ua.C.x_yeti-3_6.5.0_performance_2, time (sec), duration: 35.277310, count

0.000

0.005

0.010

0.015

ti
m

e 
(s

ec
)

slice (24792)

sleepslice (17640)

yieldslice (7152)

0 10000 20000 30000

ua.C.x_yeti-3_6.6.0_performance_10, time (sec), duration: 83.800233, count

0.000

0.005

0.010

0.015

ti
m

e 
(s

ec
)

slice (39546)

sleepslice (12226)

yieldslice (27320)

Does it matter that they are all one tick?

Or that they are all the same?

19



What’s new with EEVDF?

Time slices are now mostly one tick.

0 5000 10000 15000 20000

ua.C.x_yeti-3_6.5.0_performance_2, time (sec), duration: 35.277310, count

0.000

0.005

0.010

0.015

ti
m

e 
(s

ec
)

slice (24792)

sleepslice (17640)

yieldslice (7152)

0 10000 20000 30000

ua.C.x_yeti-3_6.6.0_performance_10, time (sec), duration: 83.800233, count

0.000

0.005

0.010

0.015

ti
m

e 
(s

ec
)

slice (39546)

sleepslice (12226)

yieldslice (27320)

Does it matter that they are all one tick? Or that they are all the same? 19



v6.5, v6.5 with fixed time slices, and v6.6

0 5 10 15 20 25 30 35 40 45 50
0

50

100

runs (sorted by increasing runtime)

se
co

nd
s

6.5
6.5ts1
6.5ts8
6.6

And that’s where the story ends...

20



v6.5, v6.5 with fixed time slices, and v6.6

0 5 10 15 20 25 30 35 40 45 50
0

50

100

runs (sorted by increasing runtime)

se
co

nd
s

6.5
6.5ts1
6.5ts8
6.6

And that’s where the story ends...

20



Discussion

• What goes wrong with UA?

• What information is useful to visualize?

• How to organize it?

• How to visualize new information (e.g., timeslice)?

21



Discussion

• What goes wrong with UA?

• What information is useful to visualize?

• How to organize it?

• How to visualize new information (e.g., timeslice)?

21



A proposal

dat2graph:timeslice:
An edge between task start and
stop.
@dat2graph@
comm c1, c2, c3;
pid p1, p2 != 0, p3;
time t1, t2;
core c;
@@

sched_switch(c1,p1,_,c2,p2)@t1@c
...
sched_switch(c2,p2,_,c3,p3)@t2@c
==> edge(point(t1,c),point(t2,c),color(p2))

22



A proposal

dat2graph:timeslice:
An edge between task start and
stop.
@dat2graph@
comm c1, c2, c3;
pid p1, p2 != 0, p3;
time t1, t2;
core c;
@@

sched_switch(c1,p1,_,c2,p2)@t1@c
...
sched_switch(c2,p2,_,c3,p3)@t2@c
==> edge(point(t1,c),point(t2,c),color(p2))

timeslice:dat2graph:
Collect time between task start and
stop.
@timeslice@
comm c1, c2, c3;
pid p1, p2 != 0, p3;
time t1, t2;
core c;
reason r;
@@

sched_switch(c1,p1,_,c2,p2)@t1@c
...
sched_switch(c2,p2,r,c3,p3)@t2@c
==> collect(r, t2 - t1)

22



A proposal

running_waiting: Keep a count of running tasks.

@running_waiting@
comm c; pid p; time t;
@@

sched_switch(_,0,_,c,p)@t
==> running[t] = ++running_count

@running_waiting@
comm c; pid p; time t;
@@

sched_switch(c,p,_,_,0)@t
==> running[t] = --running_count

Waiting is more complex, because a task can be waiting for multiple reasons.
23



A proposal

running_waiting: Keep a count of running tasks.

@running_waiting@
comm c; pid p; time t;
@@

sched_switch(_,0,_,c,p)@t
==> running[t] = ++running_count

@running_waiting@
comm c; pid p; time t;
@@

sched_switch(c,p,_,_,0)@t
==> running[t] = --running_count

Waiting is more complex, because a task can be waiting for multiple reasons.
23



An alternative

Focus on task states, rather than events.

@running_waiting@
comm c; pid p != 0; time t;
@@

In(running(c,p))@t
==> running[t] = ++running_count;

waiting[t] = ++waiting_count;

@running_waiting@
comm c; pid p != 0; time t;
@@

Out(running(c,p))@t
==> running[t] = --running_count;

waiting[t] = --waiting_count;

@running_waiting@
comm c; pid p; time t;
@@

In(waiting(c,p))@t
==> waiting[t] = ++waiting_count

@running_waiting@
comm c; pid p; time t;
@@

Out(waiting(c,p))@t
==> waiting[t] = --waiting_count;

24



Availability

• dat2graph: Horizontal bar graph showing what is happening on each core at
each time.

• running_waiting: Line graph of how many tasks are running or waiting on a
runqueue at any point in time.

• stepper: Step-by-step execution of all tasks on all cores.

• hostguest: Activity on vcpus + status of vcpus as running or waiting.

https://gitlab.inria.fr/schedgraph/schedgraph.git

25


