
Storing and Outputting Test Information: 
KUnit Attributes and KTAPv2
Rae Moar <rmoar@google.com>



Outline
● Background on KUnit and Supplemental Test Information

● KUnit Test Attributes

● How to Output Test Information in KTAP

● KTAP v2

● Questions



What Is KUnit?



What Is KUnit?

● A Unit Testing framework for the Linux Kernel.
● Upstream since 5.5
● Tests are written in C and run in kernel mode
● Tools to run these tests, and parse the results:

○ ./tools/testing/kunit/kunit.py run
○ Uses User-Mode Linux by default, or QEMU for other architectures.
○ ./tools/testing/kunit/kunit.py run --arch x86_64



Background on Test Information 



Background on Test Information

● What do we mean by Test Information?
○ Not talking about the value of variable "x" used during 

test execution
○ Information primarily for user interaction either before 

or after test execution (like test name or speed of test)
● Current Norm of Test Information

○ Basics (test name, result) very well categorized
○ Everything else is pretty unorganized

● Is this a good system?
● Could we instead take that supplemental test 

information and make it more useful?



Background on Test Information

● There is a wide variety in test information

● Examples:

○ speed: The relative speed of a test (enum categories: normal, slow, very slow)
■ Inspiration: CONFIG_MEMCPY_SLOW_KUNIT_TEST
■ How is it useful?

● Filter out tests based on speed
■ Needs: Manually Stored, Filtering, Outputted in KTAP

○ is_init: Whether the test uses init data or functions (bool)
■ How is it useful?

● Filter out init tests if the init section could be discarded 
■ Needs: Auto Generated and Stored, Filtering



Background on Test Information

● One More Example:

○ output_files: list of file path of auxiliary files that could be generated during test execution (list 
of strings)

■ How is it useful?
● Read during output to give extra context to test results

■ Needs: Stored during Test Execution, Outputted in KTAP

● What do we need to implement a framework for this test information?
○ Store information manually and auto-generated (a variety of data types)
○ Filter based on test information
○ Output this in a readable and parsable way (in KTAP)



KUnit Attributes



KUnit Attributes

● Objective: To save and access supplemental 
test information

● Current Attributes: speed, module name
● What can you do with KUnit Attributes?

○ Create attribute of any data type
○ Mark tests (manually or auto-generated)
○ Filter Tests
○ Output to KTAP

● How to Use:
○ Add attributes using the struct kunit_attributes

■ or KUNIT_CASE_SLOW()
○ To filter use module param kunit.filter or kunit.filter_skip

■ Tooling Flags: --filter or --filter_skip



KUnit Attributes Example
Running KUnit with Default Settings:

Running KUnit with Default Settings Plus Filter out 6 Slow Tests:
(Command: ./…/kunit.py run --filter "speed>slow")

Major Difference in Time!

● Elapsed Time: 63% faster

● Running Time: 89% faster



Potential KUnit Attributes

● is_init
○ Whether the test uses init data or functions (bool)
○ To prevent re-running init tests after boot

● file
○ File path of suite (i.e. lib/kunit_example.c)
○ Useful when looking up test that is failing

● custom_tags
○ A list of strings ("tags") to mark the test that can 

be personalized to the test suite

● Parameterized test attributes
○ Implement a generate_attrs function to assign 

attributes given a parameter



KTAP Output



KTAP Output

● How should KUnit Attributes and other test 
information be formatted in KTAP?

○ Identifiable
○ Parsable
○ May need to add to KTAP v2 to create a 

specification
● KTAP Metadata Proposal (link)

○ Metadata lines format
■ "# type: value"
■ Diagnostic line to aid existing parsers
■ Header is "# test: name"

○ Location
■ Suites: Located between KTAP version line 

and test plan line (1..x)
■ Test Cases: Located prior to test result line

https://lore.kernel.org/all/CA+GJov6w2GvD8th0t9RW=K1ntHk4dQRuYa4hoDHcmzBDK5YriA@mail.gmail.com/


KTAP Metadata

● Metadata types currently discussed:
○ Test names
○ File path and Module name
○ Speed
○ Config info
○ Supplemental files paths
○ What others should we consider? Does not need 

to be KUnit Attribute
● Custom metadata types:

○ Would not need to be in spec before using
○ Could use prefixes:

■ ktap_[type]: indicates KTAP specified
■ custom_[type]: indicated not KTAP specified



KTAP v2

● Proposals have been submitted for KTAP v2

○ KTAP Metadata

○ "skip" test result

● All changes on a separate branch within Frank's Tree

○ https://elinux.org/Test_Results_Format_Notes#KTAP_version_2 

● Open Questions:

○ How should we continue to develop KTAP v2?

○ What is the ideal timeline for KTAP v2?

https://elinux.org/Test_Results_Format_Notes#KTAP_version_2


Open Questions



Open Questions

● What KUnit attributes should we be saving?

● Would generating KUnit attributes be helpful for parameterized tests? Are 

there specific attributes to add for parameterized tests?

● What are thoughts on the proposed format of KTAP Metadata? What test 

information should be saved as a specified type of KTAP Metadata?

● How can we support the development of KTAP v2?


