Testing Drivers with KUnit

(Does Hardware have to be Hard?)
David Gow <davidgow@google.com>

s

mailto:davidgow@google.com

What Is KUnit?

What Is KUnit?

e A Unit Testing framework for the Linux Kernel.

e Upstream since 5.5

e Tests are written in C, run in kernel mode, and can call arbitrary kernel
functions.

e Tools to run these tests, and parse the results:
o ./tools/testing/kunit/kunit.py run
o Uses User-Mode Linux by default, or QEMU for other architectures.
o ./tools/testing/kunit/kunit.py run --arch x86_64

Recent and Advanced Features

e Test-managed resources: automatically clean things up on test
failure/completion.

e Parameterised testing: provide an array of inputs (or a generator function) to
create several similar tests.

e Function redirection (mocking)

e A bunch of tooling features:

o Architecture emulation via kunit.py --arch {x86_64,arm64,s390,etc}
o Easily add extra kconfig options with --kconfig_add CONFIG_KASAN=y

e Forthe full list of changes, version by version, see
https://kunit.dev/release notes.html

https://kunit.dev/release_notes.html

Some code is easy to test

"Library” code

Data structures and algorithms
Helper functions

Parsers

Anything 'self-contained' or 'pure
Code with explicit abstractions

Some code is really difficult

Global state (in all its forms)

Anything with global or static state
High coupling to other systems
Hardware state is global state

Big lists of things (e.g. devices) in the kernel
o 'register' a device / filesystem / etc

e Implicit global state (memory allocations, etc)

Why?

e Need a known starting state.
e Need to mutate that state.
e Need no conflicting mutations.

However,

Can start in an unknown state.

Mutating that state can break other parts of the kernel.

Other parts of the kernel can modify the state.

Can't just lock it: some of this state may be necessary to run the test.
How do you handle failed tests, leaks, etc.

What can we do?

Design / refactor code for testing

e Minimise global state.

e \Where that's not possible, wrap it.

e Make good use of 'pure' helper functions.
e Goal: swap in fake clients and devices.

e (oal: clean internal API surfaces.

e Lots of existing code.
e Can require more work.
e Can have performance impacts.

Function Redirection (static_stub)

Redirect calls to a global function during the test.
Available since 6.3

e Requires adding a macro to the 'target' function:
o KUNIT_STATIC_STUB_REDIRECT(fn_name, args...)
o Compiles to 'if (function is redirected) return new_function(args)'

e Redirection only happens from test thread, can be controlled by tests at runtime.
e No performance impact if no KUnit, minimal if redirection not enabled

But,

e Can't redirect things needed for the test to function (e.g. kmalloc())
e May need to export functions if deep in the callstack.
e Multithreaded tests can be fun.

Devices and Drivers

e Most drivers need a device pointer, which needs registering

e In the past: struct root_device & root_device_register()
o Worked well for simple cases, but caused some horror

e Platform devices
o Can work, but still need a bus of some kind.

e DeviceTree support
o Stephen Boyd has some patches.
o A magic 'linux,kunit' board
o Switching to DT overlays
e struct kunit_device
o Patches in progress to have a specific kunit device and kunit bus.
o Helpers to manage these within the test lifecycle.

Open Questions

LOGIC_IOMEM

e UML feature used for virtio/PClI.
e (Callbacks for iomem accesses.

e Do we want this for KUnit hardware mocking?
o Can intercept register writes.

e If so, do we need to port this to non-UML architectures?
o How do we handle integration between real iomem and logic iomem?

e Breaks the fallback approach of just passing real memory around and
inspecting it.

Variable redirection

A.K.A static_data_stubbing

Replace a global variable with another within a test
(Macro magic and a pointer indirection)

Prototype exists, but probably over-the-top.

User context / MM context

e Make copy {to,from} user() and similar work.

e No easy way of creating a context which works from kernel space
(everything's done in execve())

e Some promising prototypes.

Something else?

Questions / Comments?

Or visit kunit.dev/ and subscribe to
kunit-dev@googlegroups.com

