
Testing Drivers with KUnit
(Does Hardware have to be Hard?)

David Gow <davidgow@google.com>

mailto:davidgow@google.com


What Is KUnit?



What Is KUnit?

● A Unit Testing framework for the Linux Kernel.
● Upstream since 5.5
● Tests are written in C, run in kernel mode, and can call arbitrary kernel 

functions.
● Tools to run these tests, and parse the results:

○ ./tools/testing/kunit/kunit.py run
○ Uses User-Mode Linux by default, or QEMU for other architectures.
○ ./tools/testing/kunit/kunit.py run --arch x86_64



Recent and Advanced Features

● Test-managed resources: automatically clean things up on test 
failure/completion.

● Parameterised testing: provide an array of inputs (or a generator function) to 
create several similar tests.

● Function redirection (mocking)
● A bunch of tooling features:

○ Architecture emulation via kunit.py --arch {x86_64,arm64,s390,etc}
○ Easily add extra kconfig options with --kconfig_add CONFIG_KASAN=y

● For the full list of changes, version by version, see 
https://kunit.dev/release_notes.html

https://kunit.dev/release_notes.html


Some code is easy to test



"Library" code

● Data structures and algorithms
● Helper functions
● Parsers
● Anything 'self-contained' or 'pure'
● Code with explicit abstractions



Some code is really difficult



Global state (in all its forms)

● Anything with global or static state
● High coupling to other systems
● Hardware state is global state
● Big lists of things (e.g. devices) in the kernel

○ 'register' a device / filesystem / etc
● Implicit global state (memory allocations, etc)



Why?

● Need a known starting state.
● Need to mutate that state.
● Need no conflicting mutations.

However,

● Can start in an unknown state.
● Mutating that state can break other parts of the kernel.
● Other parts of the kernel can modify the state.
● Can't just lock it: some of this state may be necessary to run the test.
● How do you handle failed tests, leaks, etc.



What can we do?



Design / refactor code for testing

● Minimise global state.
● Where that's not possible, wrap it.
● Make good use of 'pure' helper functions.
● Goal: swap in fake clients and devices.
● Goal: clean internal API surfaces.

But:

● Lots of existing code.
● Can require more work.
● Can have performance impacts.



Function Redirection (static_stub)

● Redirect calls to a global function during the test.
● Available since 6.3
● Requires adding a macro to the 'target' function:

○ KUNIT_STATIC_STUB_REDIRECT(fn_name, args…)
○ Compiles to 'if (function is redirected) return new_function(args)'

● Redirection only happens from test thread, can be controlled by tests at runtime.
● No performance impact if no KUnit, minimal if redirection not enabled

But,

● Can't redirect things needed for the test to function (e.g. kmalloc())
● May need to export functions if deep in the callstack.
● Multithreaded tests can be fun.



Devices and Drivers

● Most drivers need a device pointer, which needs registering
● In the past: struct root_device & root_device_register()

○ Worked well for simple cases, but caused some horror
● Platform devices

○ Can work, but still need a bus of some kind.
● DeviceTree support

○ Stephen Boyd has some patches.
○ A magic 'linux,kunit' board
○ Switching to DT overlays

● struct kunit_device
○ Patches in progress to have a specific kunit device and kunit bus.
○ Helpers to manage these within the test lifecycle.



Open Questions



LOGIC_IOMEM

● UML feature used for virtio/PCI.
● Callbacks for iomem accesses.
● Do we want this for KUnit hardware mocking?

○ Can intercept register writes.
● If so, do we need to port this to non-UML architectures?

○ How do we handle integration between real iomem and logic iomem?
● Breaks the fallback approach of just passing real memory around and 

inspecting it.



Variable redirection

● A.K.A static_data_stubbing
● Replace a global variable with another within a test
● (Macro magic and a pointer indirection)
● Prototype exists, but probably over-the-top.



User context / MM context

● Make copy_{to,from}_user() and similar work.
● No easy way of creating a context which works from kernel space 

(everything's done in execve())
● Some promising prototypes.



Something else?



Questions / Comments?
Or visit kunit.dev/ and subscribe to 

kunit-dev@googlegroups.com


