
[AMD Official Use Only - General]

[AMD Official Use Only - General]

Secure AVIC
Securing Interrupt Injection from

a Malicious Hypervisor

Kishon Vijay Abraham

Suravee Suthikulpanit

Authors:

[AMD Official Use Only - General]

Agenda
•Introduction

•Hardware & Software Architecture

•Linux Host / Guest Initialization

•Interrupt Injection Supports
• IPI interrupts

•Device interrupts

•Current Status & Issues

[AMD Official Use Only - General]

Introduction

•Added security for guest APIC registers for SEV-SNP guests

•HW acceleration for performance sensitive APIC register accesses
• Initially support only Self-IPI and EOI virtualization

•Single vs. Multi-VMPL usage models
•Currently leverage single-VMPL w/ enlightened guest.

•#VC handler is responsible for emulating additional functionality

•Only support x2APIC mode via x2APIC MSRs

[AMD Official Use Only - General]

HW Architecture

•Guest APIC Backing Page

•Allocated and managed by Guest

•Host APIC backing page allocation still exist
• Cache pending interrupts in IRR

•AllowedIRR[0..7] Registers (Guest-controlled)

•New field to indicate the interrupt vectors which the

guest

allows the hypervisor to send.

•RequestedIRR[0..7] Registers (Host-Controlled)

•Each set bit in RequestedIRR registers, would be set

in the APIC backing page IRR registers by the

microcode if the same bits are set in the AllowedIRR

registers.

Guest

APIC

Backing

Page

Allowed

IRRs

VMCB

Requested

IRRs

UpdateIRR

Secure AVIC Ctrl

MSR C001_0138

Secure AVIC Control

Host

Guest

Guest Private Memory

[AMD Official Use Only - General]

Host

Guest

Guest

APIC

Backing

Page

Allowed

IRRs

Requested

IRRs

Guest

APIC

Registers

#
V

M
G

E
X

IT

Guest

#VC Handler

Guest

Kernel

#
V

M
E

X
IT

AVIC_INCOMPLETE_IPI

#VC Handler

AVIC_NOACCEL

#VC Handler

MSR C001_011B

AVIC Doorbell

AVIC_INCOMPLETE_IPI

#VMEXIT Handler

Notify running

vCPU

Guest APIC

Register Accesses

Virtualized by HW

Emulated device

inject interrupts

Guest

Updates

IRQ vector

#
V

M
G

E
X

IT V
M

R
U

N

#
V

M
E

X
IT

Guest send

IPI

Virtualized by HW

VMCB

Guest Private

Memory

#
V

M
G

E
X

IT

Shadow

APIC

Backing Page

(SW only)

AVIC_NOACCEL

#VMEXIT Handler

SW Architecture

[AMD Official Use Only - General]

Emulated x2APIC x2AVIC Secure AVIC

APIC Backing Page Owned by Hypervisor Owned by Hypervisor Owned by Guest

Register Access
All Read and Write: VMEXIT and

Handled by hypervisor

• Most Reads are accelerated by HW except

extended APIC register

• Most writes results in VMEXIT except

ICR, TPR, EOI register

• All accesses to ICR, TPR and EOI registers are

accelerated.

• For other registers, access must be handled by #VC

handler

Self IPI
VMEXIT and injected via event

injection
Accelerated by HW Accelerated by HW

Broadcast IPI

(All Including Self)

VMEXIT and injected via event

injection

• Accelerated by HW if target vCPU is

running

• VMEXIT AVIC_INCOMPLETE_IPI to

reschedule vCPU.

• Self IPI is accelerated by HW

• #VC handler for all other target vCPU

• VMGEXIT to ring doorbell or wakeup target vCPU (by

hypervisor)

Broadcast IPI

(All Excluding Self)

VMEXIT and injected via event

injection

• Accelerated by HW if target vCPU is

running

• VMEXIT AVIC_INCOMPLETE_IPI to

reschedule vCPU.

• #VC handler for all target vCPU

• VMGEXIT to ring doorbell or wakeup target vCPU (by

hypervisor)

Emulated Device

Interrupt Injection

VMEXIT and injected via event

injection

• HV inject by updating APIC IRR register

• HV ring doorbell or wakeup target vCPU

• Guest updates AllowedIRR

• HV updates RequestedIRR and UpdateIRR

• HV ring doorbell or wakeup target vCPU

Multiple Pending

Interrupt

VMEXIT for each interrupt using

VINTR EXIT
HW invokes ISR for each set IRR

HW invokes ISR for each set bits of

[Allowed | Requested] IRRs.

Linux APIC Virtualization Comparison

[AMD Official Use Only - General]

Initialization: Secure AVIC (Host)

•New kvm_amd kernel module option:

•kvm_amd.secure_avic

(mutual exclusive to the avic parameter)

•Checking CPUID for the feature support

•Enabling the feature

•Set the SEV_FEATURES[SecureAvic] bit in the VMSA.

secure_avic == 1

(kvm_amd module_param)

&&

CPUID Fn8000_001F_EAX

[SecureAvic] == 1

sev_es_save_area.sev_features

|=

SVM_SEV_FEAT_SECURE_AVIC

SNP Flow

YES

NO

Start

SEV/SNP Guest

[AMD Official Use Only - General]

Initialization: Secure AVIC (Guest)

•Check MSR_C0010131 SEV STATUS

[SecureAvicEn] bit
• Indicates Secure AVIC support for guest

•Allocate Guest APIC Backing Page
• Program backing page 4k-aligned GPA into the

MSR_C001_0138[GuestApicBackingPagePtr]

• Pinned in while in Guest mode (during vmrun)

• Page is marked private (encrypted) in RMP table.

•Enabling Secure AVIC feature
• Set MSR_C0010138[SecureAvicEn] bit

MSR C001_0131

SEV_STATUS MSR

[SecureAvic_Enabled] == 1

x2APIC

Allocate Backing Page

Setup AllowedIRR / NMIReq

YES

YES

x2APIC Secure AVIC Flow

APIC/AVIC

Flow

x2APIC/x2AVIC

Flow

NO

NO

Guest Boot

Program Secure Avic Control

(MSR C001_0138)

[AMD Official Use Only - General]

IPI Injection
Guest #VC Handler Hypervisor

Source vCPU VMRUN

YESNO

WRMSR ICR (x2APIC) SVM_EXIT_AVIC_INCOMPLETE_IPI

Read ICR from Backing Page

Update Backing Page IRR

(One or more based on DSH and

Logical/physical APIC mode)

Non-Automatic Exit

VMGEXIT

(Pass INCOMPLETE_IPI reason and

ICR DATA to Hypervisor)

Automatic Exit

SVM_EXIT_AVIC_INCOMPLETE_IPI

Read ICR from EXIT_INFO

Target vCPU

==

Running

Write

AVIC Doorbell

to notify target vCPU

Wake up target vCPU

VMGEXIT Ret

HW Accelerates

self IPI

WRMSR SelfIPI
DSH == 2

(All Inc Self)

DSH == 1

(Self)

DSH == 0(Destination) ||

DSH == 2 (All incl self) ||

DSH == 3 (All excl self
YES

NO

[AMD Official Use Only - General]

QEMU Injects Interrupt

(Emulated Device /

Non-AVIC Pass-through Device)

KVM caches interrupt vector

to be injected in APIC IRR of

the Shadow APIC backing Page

vCPU = halt

vCPU exit HLT loop

IPI to physical CPU executing vCPU

(smp_send_reschedule())

vmenter Guest

INTR VMEXIT

YES NO

svm_deliver_interrupt()

Copy IRR of shadow APIC Backing

Page to RequestedIRR

And clear the bit from

The shadow APIC Backing Page

Set UpdateIRR bit

VMEXIT

Clear RequestedIRR and UpdateIRR

Disable PV-EOI

VMRUN

Host Device Interrupt Injection

[AMD Official Use Only - General]

IOAPIC IRQ Domain MSI IRQ Domain

IOAPIC Devices
Virtio devices/

Passthrough devices

Update AllowedIRR

(set/clear AllowedIRR bits

for each vector)

x86 Vector Domain

• arch/x86/kernel/apic/vector.c is modified

to update the AllowedIRR registers.

•Microcode sets IRR bit in APIC backing page

based on AllowedIRR and RequestedIRR

•Microcode sets ISR bit in APIC backing page

(guest) after interrupt handler is invoked

•When Guest Kernel writes to EOI register,

microcode clears ISR bit and invokes

interrupt handler of the next set IRR

Guest Device Interrupt Injection

[AMD Official Use Only - General]

•Phase #1 : (Currently work-in-progress)
• IPI Interrupt Injection support

•Emulated device interrupt injection support

•Successfully boot a VM w/ 128 vCPUs

•Phase #2 :
•NMI Emulation

•LAPIC Timer Emulation

Status

[AMD Official Use Only - General]

•Secure AVIC hardware requires PTE entry for guest APIC backing page to always

be present in the nested page table
•There should be no NPF Exception when HW accesses backing page.

•KVM MMU zaps PTE frequently causing NPF resulting in VMEXIT_BUSY and

prevents the vcpu to resume.

•Temporary Workaround
• Invoke kvm_tdp_mmu_map() to populate PTE of backing page in the page table before VMRUN.

•However, this workaround does not always guarantee the page to be present.

Issues

[AMD Official Use Only - General]

Q & A

	Slide 1
	Slide 2: Secure AVIC
	Slide 3: Agenda
	Slide 4: Introduction
	Slide 5: HW Architecture
	Slide 6: SW Architecture
	Slide 7: Linux APIC Virtualization Comparison
	Slide 8: Initialization: Secure AVIC (Host)
	Slide 9: Initialization: Secure AVIC (Guest)
	Slide 10: IPI Injection
	Slide 11: Host Device Interrupt Injection
	Slide 12: Guest Device Interrupt Injection
	Slide 13: Status
	Slide 14: Issues
	Slide 15: Q & A

