
Syzbot: 7 years of 
continuous kernel fuzzing

Aleksandr Nogikh <nogikh@google.com>
Google

Linux Plumbers Conference 2023
Richmond, VA



Agenda

● Introduction
● Ignored vs Addressed Findings
● 2023 Updates
● Bug Analysis
● Controversial Topics
● Questions / Discussion

2



Syzbot

● syzkaller (coverage-guided kernel fuzzer) appeared in 2015.
○ Syzkaller is a standalone application.

● syzbot has begun to report kernel findings to LKML in 2017.
○ Syzbot is a continuous kernel build / fuzz / report aggregation system.
○ Syzbot uses syzkaller for the actual fuzzing.

● ~17k findings detected and ~6k reported to LKML.
● 3400+ Linux kernel commits directly mention syzbot.

○ Syzbot's web dashboard records 4800+ resolved findings.

3



Syzbot Reports

4

+ Reproducers / Downloadable files / Stack traces

< ... >



Web Dashboard

https://syzkaller.appspot.com

5

< ... >

https://syzkaller.appspot.com/upstream


Web Dashboard (2)

6

< ... >



Mainline Linux Kernel Fuzzing

Covered targets:

● GCE/x86_64
● GCE/arm64
● qemu/x86_64 (KVM)
● qemu/arm32 (emu)
● qemu/arm64 (emu)
● qemu/RISC-V (emu)

7

Covered trees:

● torvalds/master
● linux-next/master
● bpf/master
● bpf-next/master
● other fuzzed mainline trees

Linux kernel is fuzzed on 25 syzkaller instances using ~150-200 VMs in total.

https://syzkaller.appspot.com/upstream/repos


Yearly Figures

8

(*) Commits in the "torvalds" tree that mention syzbot or syzkaller.appspot.com.



Reported Findings (2020-2023)

9



Patch Testing Requests

10(*) Extrapolation based on the data 01/2023-10/2023.



Ignored vs Addressed Findings

11



Reported Findings: Status Distribution

12

Days after reporting to LKML



Report Factor Importance

Q: What report factors are most important?

(*) 45 days is a convenient figure:

● 72% reports that are ever addressed are addressed within 45 days.
● Automatic bug obsoletion comes into effect later.

13

F(Report Factors) = 
True if the report was addressed within 45 days(*)

False otherwise



Features Importance (per Mutual Information)

● Affected kernel subsystem.

● Average recorded Hits/Day (bucketed).

● Cause Bisection present.

● Report type (KASAN, BUG, WARNING, lockdep, etc.).

● Report month / week day / hour (bucketed).

● Reproducer present.

14

Dataset: syzbot reports to public mailing lists 2020-2023.



Effect of Average Hits/Day on %% addressed in 45 days

Yes, it's a surprisingly strong correlation.

No, it's not explainable by higher repro/cause bisect success rates.
15



Effects of Repro and Cause Bisection

16

Reproducer: NO Reproducer: YES

Cause Bisection: NO 14% addressed
in 45 days

19% addressed
in 45 days

Cause Bisection: YES impossible 39% addressed
in 45 days



Effect of Report Type

Some examples.

17

Report Type Addressed in 45 days

UBSAN 30%

general protection fault 27%

KASAN 20%

WARNING 20%

lockdep 20%

INFO: task hung 10%



2023 Updates

18



Cause Bisections

19

More bisections:

2023Q3 findings with a reproducer: ~40% have cause bisection

2022 findings with a reproducer: ~20% have cause bisection

Better precision (see next slide)



Cause Bisections: Challenges

20

● Many kernel revisions do not build/boot with syzbot config.
○ We cherry-pick a number of commits to address known build/boot failures.
○ New: kernel config is partially minimized before bisection.

● Bug reproducers are not always reliable.
○ New: syzbot estimates accumulated error probability and applies a threshold.
○ Stochastic git bisections could really help here.

● Single reproducer might trigger several unrelated bugs.
○ New: syzbot drops unnecessary instrumentation and ignores unrelated crashes. 

But that's not a 100% remedy :(
● Bisecting by reproducer points not to the culprit, but to the commit that 

surfaced the bug.
○ Could it be ever resolved automatically?

https://github.com/google/syzkaller/blob/master/pkg/vcs/linux_patches.go


LKML Discussions Monitoring

21

On each per-report page on the Web Dashboard (example)

no comments

has a patch (patch candidate) that was last commented 7 days ago

one user comment 12 days ago

In every list of open findings

https://syzkaller.appspot.com/bug?extid=29c22ea2d6b2c5fd2eae


Subsystem Labels

Email Subjects:

22

Web Dashboard:

https://syzkaller.appspot.com/upstream/subsystems

https://syzkaller.appspot.com/upstream/subsystems


Subsystem Pages

23

https://syzkaller.appspot.com/upstream/subsystems

https://syzkaller.appspot.com/upstream/subsystems


Subsystem Pages (2)

24



Subsystems: List Construction

● We needed a sensibly-sized list of short names to be used as tags.
● MAINTAINERS file contains very relevant information, but:

○ Too many entries (>2700 as of v6.6).
○ Too long titles that cannot be used as tags.

● For syzbot, we grouped MAINTAINERS records by mailing lists, e.g.
○ kvm@vger.kernel.org -> kvm
○ linux-serial@vger.kernel.org -> serial
○ Plus a handful of exceptions, of course.

● Result: 238 subsystems (as of October 2023). 

25



Subsystems: Classification

We auto-generate the list of rules that map every subsystem to:

● Path regexps (taken from MAINTAINERS).
○ This is to be matched agains stack traces.

● Relevant calls from reproducers (manually crafted).

Overall algorithm is straightforward:

Take X top crash reports for every bug, extract subsystems for every crash, 
aggregate the results.

(Details are omitted, look here to find out more)

26

https://github.com/google/syzkaller/blob/master/pkg/subsystem/lists/linux.go
https://github.com/google/syzkaller/blob/master/pkg/subsystem/extractor.go


Subsystems: Limitations

● Sometimes there are false positives, it's affected by other error-prone functionality:
○ Unrelated crashes grouped together.
○ Stack traces may be misleading.

■ They span over multiple different subsystems.
■ They don't include the actual guilty frame.

● We periodically recalculate subsystem labels as we collect more crashes.
○ It's especially problematic in mistakenly glued reports.
○ But no labels updated via #set subsystem are overwritten.

● Still, in the majority of cases, the precision look good.

The subsystems list and the classifications rules are there to be adjusted to your needs.
Please feel free to contact us at syzkaller@googlegroups.com.

27

mailto:syzkaller@googlegroups.com


Bug Analysis

28



Kernel Bug Presence (example)

29

Mainline
HEAD

LTS
HEAD✔ ❌

A bug in an LTS kernel is found.

We run reproducer on two trees:
● HEAD of LTS: crashes.
● HEAD of Mainline: doesn't crash.

What does it mean?



BUG

Kernel Bug Presence (example)

30

Mainline
HEAD

LTS
HEAD

FIX

Mainline
HEAD

LTS
HEAD

BUG

Missing backport
from Mainline

Problem that never
existed in Mainline

Some corner cases:

● Bug reproducer is 
unreliable.

● Reproducer triggers 
several bugs.

Let's assume the chances are 
not very high.



LTS-Only Bugs on Syzbot

Syzbot performs this analysis for two Linux LTS versions:

31

5.15 421 open bugs
96 open bugs 
are LTS-only

(~23%)

192 open bugs are 
also in Mainline

(~45%)

No decision for
133 bugs (32%)

6.1 388 open bugs
68 open bugs 
are LTS-only

(~17%)

192 open bugs are 
also in Mainline

(~49%)

No decision for
128 bugs (34%)

These likely have 
non-backported 

fixes

Data as of October 2023

https://syzkaller.appspot.com/linux-5.15
https://syzkaller.appspot.com/linux-5.15?label=origin%3Alts-only
https://syzkaller.appspot.com/linux-5.15?label=origin%3Aupstream
https://syzkaller.appspot.com/linux-6.1
https://syzkaller.appspot.com/linux-6.1?label=origin%3Alts-only
https://syzkaller.appspot.com/linux-6.1?label=origin%3Aupstream


Missing Backports

32

Crashes

Mainline
HEAD

LTS
HEAD

Doesn't 
crash

Bisect
range

● Bug reproduces on the merge base 
between Mainline and LTS

● Bug does not reproduce on HEAD of 
Mainline

We can perform a bisection to find the 
non-backported fixing commit.

With improvements to the bisection process, 
we can even expect reasonably good 
results.



Missing Backports: Current Results

33

Linux 5.15 LTS Linux 6.1 LTS

Total Found 32 32

Correct 21 (65%) 26 (81%)

No `Fixes:` tag 19 of 21 (90%) 21 of 26 (81%)

Manual analysis (as of October 2023):

https://syzkaller.appspot.com/upstream/backports

https://syzkaller.appspot.com/upstream/backports


What are those commits?

Among the correctly identified backport candidates:

1. Actual bug fixes: 30 of 47 (~64%) 
2. Refactorings and optimizations: 9 of 47 (~20%) 
3. Removed or fixed an invalid code assertion: 5 of 47 (~10%)
4. Kernel feature deprecations: 3 of 47 (~6%)

34



Controversial Topics

35



"Please don't fuzz/report bugs in XYZ"

36

Conflicting Points:

● There's no point in sending reports that are
○ Unlikely to be ever addressed,
○ Not perceived as bugs by the kernel development community.

● If the code is in the kernel and compiled in by many Linux distributions, is it 
correct to ignore problems in it?

Compromise Solution [currently being implemented]:

Such findings are not reported via email, but displayed on the web dashboard 
and labeled with a special tag.



Low severity and low priority reports

Complaints:

● Syzbot reports shallow problems.
● Syzbot exercises code paths never meant for real-world use.

New:
● Specify priority and filter findings by priority on the web dashboard:

#syz set prio: low
● Exclude a finding from monthly reporting:

#syz set no-reminders

For repetitive cases, please contact us at syzkaller@googlegroups.com
37

mailto:syzkaller@googlegroups.com


Low severity and low priority reports (2)

syzkaller (as a fuzzing tool) would trigger more interesting problems if:
● There are more descriptions of the target subsystem's interface.

○ Descriptions let it generate more meaningful programs that go
deeper into the code.

● There are no crashes fuzzing stumbles on at the very beginning.
● The kernel code is using assertions with extra care.

38



Maintainer Burnout

Complaint:

syzbot contributes to the overload of Linux kernel maintainers.

What can syzbot do to improve the situation from its side?

One option could be to "shift-left" kernel fuzzing (i.e. fuzz also incoming patches).

● More bugs are discovered and fixed before merging => less stress for maintainers 
later.

● The "lightweight" approach: apply incoming patch, build an instrumented kernel, 
run syzbot's corpus (40-50k programs).
○ An efficiency evaluation must be performed first.
○ Can it be done on existing/developed kernel CIs?

39



False Positives

● Appear in multiple places.
○ Invalid bisection results.
○ Incorrectly inferred subsystems.
○ Incorrectly merged reports.
○ False positive reports.
○ Not fully minimized reproducers.

● We try to focus on eliminating whole classes of false positives.
○ Individual ones are unfortunately always to expect.

● Some may only be addressed with changes to both syzbot and the kernel.
● If you have any specific ideas/suggestions, please let us know.

40



False Positive Reports

● Kernel bugs are detected by the kernel itself, syzkaller just stress-tests it and 
parses reports from the serial console/dmesg.
○ Improvements to kernel's bug detection benefit all, not just syzbot/syzkaller.
○ Improvements may include e.g. better sanitizers and proper use of assertions.

● Kernel configs that disable potentially dangerous functionality are of great 
help for fuzzing. Some examples include:
○ CONFIG_DEVMEM=n that disables /dev/mem.
○ The block: Add config option to not allow writing to mounted devices series by

Jan Kara will soon help eliminate a big class of undesired filesystem reports.

41

https://lore.kernel.org/linux-fsdevel/20231101173542.23597-1-jack@suse.cz/


Birds of a Feather Session

Topic:
How to make syzbot reports easier to debug?

Wed 15/11, 10:15 AM - 11:00 AM

42



Syzbot: 7 years of 
continuous kernel fuzzing

Linux Plumbers Conference 2023
Richmond, VA

Aleksandr Nogikh <nogikh@google.com>
Google


