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Disclaimer

● Please don’t ask me machine learning questions. 🤡
● I am trying to kill our jobs, just kidding…
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Why Autotuning?

● Liberate human engineers from tuning performance for each individual 

workload.

● Make better decisions with historical data when humans struggle.

● Find a more optimal solution than current heuristic method for a 

specific workload.

● How:

○ Rule based/heuristics

○ Machine learning based
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Why Machine Learning?
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Why Machine Learning?
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Machine Learning for OS

Source: http://learningsys.org/nips17/assets/slides/dean-nips17.pdf
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Machine Learning for OS

Source: https://github.com/torvalds/linux/blob/master/mm/readahead.c#L552
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Machine Learning for OS

Source: https://github.com/torvalds/linux/blob/master/net/ipv4/tcp_cubic.c#L214
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Machine Learning for OS

Source: https://github.com/torvalds/linux/blob/master/kernel/sched/fair.c#L3063
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Machine Learning for OS

Approach Goal Implementations

Hardcode Unchangeable TCP_INIT_CWND

procfs/sysfs/netlink 
etc.

Update kernel values ip route change ... 
initcwnd 10

eBPF Update kernel code with 
user-written program

bpf_setsockopt(TCP_BPF
_IW)

Machine Learning Update kernel code with 
learned program from 
data

Kernel machine learning?
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Increased
Automation



Machine Learning for OS

● Why: Machine Learning algorithms will help explore the potential of new 

solutions that rule-based approaches don't cover. 

● How Machine Learning helps Operating System:

○ Prediction: based on the historical performance, predicts the 

future value.

○ Root cause analysis: look back into the historical data and apply 

retrospective analysis to diagnose potential cause.

○ Classification: classify problems into different categories.

○ Optimization: recommend best parameters to take for a specific 

workload.
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Machine Learning Approaches for Optimization

● Problem definition

○ Definition: Find the best system parameters Xs to optimize the 

value of metric Y. 

○ Parameters X: the system parameters that are tunable in the system.

■ Examples: TCP initial window, vm.watermark_scale_factor

○ Metric Y: the observable metric y that changes accordingly.

■ Examples: Service latency, Throughput, Resource utilization

● Machine learning approaches: Stateless & Stateful
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Machine Learning Approaches for Optimization
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Machine Learning Approaches for Optimization

● Stateless vs Stateful

○ Stateless: Stateless machine learning algorithms don't retain the 

memory of past inputs or iterations during the training process, 

and each prediction is made based solely on the current inputs. 

○ Stateless optimization algorithms don't need to track previous 

evaluations of the objective functions to proceed with its search 

for optimum.

■ Example: Linear Regression/Random Search/Grid Search

■ When to use: simple scenario with very limited parameters 

tune; good for baseline setup, real time tuning.

■ Application: adaptivemm tuning (Linear Regression), nginx 

tuning - baseline setup (Random Search/Grid Search).
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Machine Learning Approaches for Optimization

● Stateless vs Stateful

○ Stateful: Stateful machine learning algorithms maintain the form of 

state or memory across individual data points over time. 

○ Specifically for optimization algorithms, they maintain and utilize 

the information from past evaluations of objective functions to 

guide the search for the optimal solution.

■ Examples: Bayesian Optimization/Genetic Algorithm/Simulated 

Annealing/Evolutionary Algorithm

■ When to use: non-real-time tuning, better result

■ Application: nginx tuning (Bayesian optimization)
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Statistical Performance Evaluation

Data distribution comparisons

● To evaluate performance tuning results over the metrics, we utilize 

statistical tools (quantitative) in addition to data visualization 

(qualitative). We collect the metric results observed over the specified 

duration, and transform them into data distributions for statistical 

tools to compare.

● Ideally, the more dissimilar the two distributions are, the more 

influential the tuning is. 

● When comparing data distributions, statistical approaches can be 

categorized into parametric tests and nonparametric tests. Parametric 

tests are based on assumptions about the distribution of population from 

which the sample was taken. Nonparametric tests are not based on such 

assumptions.
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Statistical Performance Evaluation

Data distribution comparisons

● Parametric:

○ Unpaired t-test: a statistical test used to compare the means of 

two independent samples. It assumes that the samples are drawn from 

populations with approximately normal distributions and equal 

variances. The unpaired t-test examines whether the means of the 

two samples differ significantly.

○ ANOVA: a statistical test used to compare the means of three or 

more independent groups or treatments. It determines whether there 

are significant differences in means between the groups.
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Statistical Performance Evaluation

Data distribution comparisons

● Nonparametric:

○ Kruskal Wallis Test: a nonparametric test used to determine if 

there are statistically significant differences between three or 

more independent groups.

○ KS Test: a non-parametric test that measures the "distance" between 

two samples; it compares the empirical cumulative distribution 

functions (CDFs) of the two samples.

○ KL Divergence: a measure of dissimilarity between two probability 

distributions. It quantifies how one distribution differs from a 

reference or target distribution.
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Use Case - DAMON

● DAMON is a Linux kernel subsystem for memory access monitoring and 

optimization

● DAMON scheme has some parameters to specify target access pattern 

(size, age, and access frequency) of memory regions

● We used simple adapter to search for the best scheme for MySQL 

application. It runs different DAMON schemes and compares their 

performance using RSS and MySQL QPS metrics

● Applying DAMON in combination with zram to identify and page out cold 

memory achieves about 30% of memory reduction
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https://www.kernel.org/doc/html/latest/mm/damon/index.html
https://github.com/awslabs/damoos/blob/main/scheme_adapters/simple_adapter/README.md


Use Case - Nginx

● What to optimize: HTTP latency on NGINX server

● What to tune: 16 kernel sysctl parameters
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Use Case - Nginx

● How to evaluate the performance: 

● each individual data point won’t get a constant value due to random noise; 

● yet collective data points will form a data distribution across time, which is 

more convenient for observation and comparisons.  

Legend:
Default Parameter Set
Parameter Set 1
Parameter Set 2
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Data Distribution plots of avg 
and p99 of HTTP latency

X-axis: HTTP latency
Y-axis: density



Use Case - Nginx
● The results of metric HTTP latency under different parameter sets

○ We utilize benchmarking tool wrk to launch tests for HTTP latency
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No. Description Comments Run Time per 
data point

HTTP 
Latency (ms)

Percentage 
Improvement

1 Expert Manual Testing (37) NA 30 min 2.66 Baseline

2

Auto Tuning with
Bayesian Optimization

Acquisition Function = UCB 17 min 2.97 -11.6 %

3 Acquisition Function = POI
With prior knowledge 17 min 2.57 3.4 %

4 Acquisition Function = UCB
With prior knowledge 17 min 2.46 7.5 %

5 Acquisition Function = EI
With prior knowledge 17 min 2.44 8.2 %

6
Acquisition Function = EI
With prior knowledge
Better handling integer nature

17-20 min 2.34 12 %



Kernel Machine Learning

Source: “KML: Using Machine Learning to Improve Storage Systems”, 
https://arxiv.org/pdf/2111.11554.pdf
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● Kernel-space has more data to access, no data transfer to 

user-space.

● Kernel-space is more real-time hence more accurate.

● Kernel-space has floating point restrictions.

● Kernel-space has less tolerance for CPU or memory 

overhead.

● Linux kernel is written in C (or Rust).

Kernel Machine Learning
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Kernel Machine Learning

● Kernel disables FP to minimize context switching overhead.

● Quantization can help reduce computational and memory overheads, but it 

reduces accuracy.

● Fixed-point representation works within fixed ranges which can result in 

numerical instability.

● kernel_fpu_begin()/kernel_fpu_end() are already used in RAID and crypto 

code.
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Kernel Machine Learning

● Page prefetching

● I/O scheduling

● CPU load balance

● Caching eviction

● Network congestion control

● Intrusion detection
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Conclusions

● We envision machine learning is important for OS optimizations.

● Although there are limitations, we believe that kernel machine learning 

is not only possible but also necessary.
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