Linux Kernel Autotuning

Cong Wang, Jasmine Mou
System Technologies & Engineering

hii| ByteDance FTiBlT

RS o

Why Autotuning

Why Machine Learning

Machine Learning Approaches for Optimization
Statistical Performance Evaluation

Our Use Cases

Kernel Machine Learning

Disclaimer

. . . [A
e Please don’ t ask me machine learning questions. "¢

@ | am trying to kill our jobs, just kidding=--

Why Autotuning?

e Liberate human engineers from tuning performance for each individual
work | oad.
e Make better decisions with historical data when humans struggle.
e Find a more optimal solution than current heuristic method for a
specific workload.
e How:
o Rule based/heuristics

o Machine learning based

Why Machine Learning?

Traditional Programming

Data
> Computation

Program

—>Qutput

Machine Learning

Data
> Computation
Output

—Program

I Why Machine Learning?

Xnew
Features X—»Learner—> Model
Target y

'

ypredicted

I Machine Learning for OS

Computer Systems are Filled With Heuristics

Compilers, Networking code, Operating Systems, ...
Heuristics have to work well “in general case”
Generally don't adapt to actual pattern of usage

Generally don't take into account available context

Source: http://learningsys.org/nips17/assets/slides/dean-nips17.pdf

7

Machine Learning for OS

576
577
578
579
580
581
582
583
584
585
586
587

A S
*x It's the expected callback index, assume sequential access.
* Ramp up sizes, and push forward the readahead window.

x/

expected = round_up(ra->start + ra->size - ra->async_size,

1UL << order);

if (index == expected || index == (ra->start + ra->size)) {

ra->start += ra->size;

ra->size = get_next_ra_size(ra, max_pages);
ra->async_size = ra->size;

goto readit;

Source: https://github.com/torvalds/linux/blob/master/mm/readahead.c#L552

Machine Learning for OS

267 t = (s32)(tcp_jiffies32 - ca->epoch_start);

268 t += usecs_to_jiffies(ca->delay_min);

269 /* change the unit from HZ to bictcp_HZ x/

270 t <<= BICTCP_HZ;

271 do_div(t, HZ);

272

273 if (t < ca->bic_K) /% t = K x/

274 offs = ca—>bic_K - t;

275 else

276 offs = t - ca—>bic_K;

277

278 /* c/rtt x (t-K)"3 *x/

279 delta = (cube_rtt_scale * offs x offs x offs) >> (10+3*BICTCP_HZ);
280 if (t < ca—>bic_K) /* below origink/
281 bic_target = ca->bic_origin_point - delta;

282 else /* above originx/
283 bic_target = ca->bic_origin_point + delta;

284

285 /* cubic function - calc bictcp_cntx/

286 if (bic_target > cwnd) {

287 ca—>cnt = cwnd / (bic_target — cwnd);

288 } else {

289 ca—>cnt = 100 x cwnd; /* very small incrementx/
290 }

291

292 /*

293 * The initial growth of cubic function may be too conservative
294 * when the available bandwidth is still unknown.

295 */

296 if (ca—>last_max_cwnd == 0 && ca—>cnt > 20)

297 ca—>cnt = 20; /* increase cwnd 5% per RTT *x/

Source: https://github.com/torvalds/linux/blob/master/net/ipv4/tcp_cubic.c#L214

Machine Learning for OS

3113 /*

3114 * If a workload spans multiple NUMA nodes, a shared fault that
3115 * occurs wholly within the set of nodes that the workload is
3116 * actively using should be counted as local. This allows the
3117 * scan rate to slow down when a workload has settled down.
3118 */

3119 ng = deref_curr_numa_group(p);

3120 if (!'priv && !local && ng && ng->active_nodes > 1 &&

3121 numa_is_active_node(cpu_node, ng) &&
3122 numa_is_active_node(mem_node, ng))

3123 local = 1;

3124

3125 /%

3126 * Retry to migrate task to preferred node periodically, in case it
3127 * previously failed, or the scheduler moved us.

3128 */

3129 if (time_after(jiffies, p->numa_migrate_retry)) {

3130 task_numa_placement(p);

3131 numa_migrate_preferred(p);

3132 }

Source: https://github.com/torvalds/linux/blob/master/kernel/sched/fair.c#L3063

10

Machine Learning for OS

)
L

Approach Goal
Hardcode Unchangeable

procfs/sysfs/netlink | Update kernel values
etc.

Increased eBPF Update kernel code with

Automation user-written program

Machine Learning Update kernel code with
learned program from
data

11

Implementations
TCP_INIT_CWND

ip route change ...
initcwnd 10

bpf setsockopt(TCP_BPF

_IW)

Kernel machine learning?

Machine Learning for OS

e Why: Machine Learning algorithms will help explore the potential of new

solutions that rule—based approaches don't cover.

e How Machine Learning helps Operating System:

O

Prediction: based on the historical performance, predicts the
future value.

Root cause analysis: look back into the historical data and apply
retrospective analysis to diagnose potential cause.
Classification: classify problems into different categories.
Optimization: recommend best parameters to take for a specific

work | oad.

12

Machine Learning Approaches for Optimization

e Problem definition
o Definition: Find the best system parameters Xs to optimize the
value of metric Y.
o Parameters X: the system parameters that are tunable in the system.
m Examples: TCP initial window, vm.watermark scale factor
o Metric Y: the observable metric y that changes accordingly.

m Examples: Service latency, Throughput, Resource utilization

e Machine learning approaches: Stateless & Stateful

13

Machine Learning Approaches for Optimization

Stateless
Parameters
. _A| Computation — Optimization Algorithm
Metrics
Stateful
{ Update w

Parameters
>’ Computation |——> Optimization Algorithm

Metrics

14

Machine Learning Approaches for Optimization

e Stateless vs Stateful

o

Stateless: Stateless machine learning algorithms don't retain the
memory of past inputs or iterations during the training process,
and each prediction is made based solely on the current inputs.
Stateless optimization algorithms don't need to track previous
evaluations of the objective functions to proceed with its search
for optimum.

m Example: Linear Regression/Random Search/Grid Search

m When to use: simple scenario with very |imited parameters

tune; good for baseline setup, real time tuning.
s Application: adaptivemm tuning (Linear Regression), nginx

tuning — baseline setup (Random Search/Grid Search).

15

Machine Learning Approaches for Optimization

e Stateless vs Stateful

o

Stateful: Stateful machine learning algorithms maintain the form of
state or memory across individual data points over time.
Specifically for optimization algorithms, they maintain and utilize
the information from past evaluations of objective functions to
guide the search for the optimal solution.

m Examples: Bayesian Optimization/Genetic Algorithm/Simulated

Anneal ing/Evolutionary Algorithm
m When to use: non—real-time tuning, better result

m Application: nginx tuning (Bayesian optimization)

16

Statistical Performance Evaluation

Data distribution comparisons

e To evaluate performance tuning results over the metrics, we utilize
statistical tools (quantitative) in addition to data visualization
(qualitative). We collect the metric results observed over the specified
duration, and transform them into data distributions for statistical
tools to compare.

e Ideally, the more dissimilar the two distributions are, the more
influential the tuning is.

e When comparing data distributions, statistical approaches can be
categorized into parametric tests and nonparametric tests. Parametric
tests are based on assumptions about the distribution of population from
which the sample was taken. Nonparametric tests are not based on such

assumptions.

17

Statistical Performance Evaluation

Data distribution comparisons

Parametric:

o

Unpaired t—test: a statistical test used to compare the means of
two independent samples. |t assumes that the samples are drawn from
populations with approximately normal distributions and equal
variances. The unpaired t—test examines whether the means of the
two samples differ significantly.

ANOVA: a statistical test used to compare the means of three or
more independent groups or treatments. |t determines whether there

are significant differences in means between the groups.

18

Statistical Performance Evaluation

Data distribution comparisons

Nonparametric:

@)

Kruskal Wallis Test: a nonparametric test used to determine if
there are statistically significant differences between three or
more independent groups.

KS Test: a non—parametric test that measures the "distance" between
two samples; it compares the empirical cumulative distribution
functions (CDFs) of the two samples.

KL Divergence: a measure of dissimilarity between two probability
distributions. |t quantifies how one distribution differs from a

reference or target distribution.

19

Use Case - DAMON

e DAMON is a Linux kernel subsystem for memory access monitoring and
optimization

e DAMON scheme has some parameters to specify target access pattern
(size, age, and access frequency) of memory regions

e We used simple adapter to search for the best scheme for MySQL

application. It runs different DAMON schemes and compares their
performance using RSS and MySQL QPS metrics
e Applying DAMON in combination with zram to identify and page out cold

memory achieves about 30% of memory reduction

20

https://www.kernel.org/doc/html/latest/mm/damon/index.html
https://github.com/awslabs/damoos/blob/main/scheme_adapters/simple_adapter/README.md

Use Case - Nginx

What to optimize: HTTP latency on NGINX server

What to tune: 16 kernel sysctl parameters

Memory Management

Swappiness
Vfs_cache_pressure
Dirty_ratio
Min_slab_ratio
min_unmapped_ratio

Networking

Tcp_reordering
Tep_limit_output_bytes
Tcp_notsent_lowat
tcp_min_tso_segs

21

CPU Scheduler

Sched_latency_ns
Sched_min_granularity_ns
sched_wakeup_granularity_ns

Block 10

Fifo_batch
Read_expire
Write_expire
writes_starved

Use Case - Nginx

e How to evaluate the performance:

e each individual data point won’t get a constant value due to random noise;
e Yyet collective data points will form a data distribution across time, which is

more convenient for observation and comparisons.

Data Distribution plots of avg

14 06
and p99 of HTTP latency

12
05 X-axis: HTTP latency

10 Y-axis: density

04
Z 8 2
1] .
3 % 03 Legend:
N 6 = A Default Parameter Set
Parameter Set 1
X 02 Parameter Set 2
2 0.1
\
0 . 0.0

0825 0850 0875 0900 0925 0950 0975 1
avg 99th percentile

Use Case - Nginx
e The results of metric HTTP latency under different parameter sets

o We utilize benchmarking tool wrk to launch tests for HTTP latency

g Run Time per HTTP Percentage
No. Description Comments .
data point Latency (ms) | Improvement
1 Expert Manual Testing (37) NA 30 min 2.66 Baseline
2 Acquisition Function = UCB 17 min 297 -11.6 %
Acquisition Function = POI .
3 With prior knowledge 17 min 2.57 3.4 %
Acquisition Function = UCB . o
4 Auto Tuning with With prior knowledge 17 min 2.46 7.5%
Bayesian Optimization
5 Acquisition Function = El 17 min 244 8.2 %

With prior knowledge

Acquisition Function = El
6 With prior knowledge 17-20 min 2.34 12 %
Better handling integer nature

23

Kernel Machine Learning

Data collection /
training

’/ predictions

inference/

ML enhanced
OS/Storage component |

(a)

App.ko”

k-MLib.ko

Kernel [pata collection]|

ML enhanced
OS/Storage compone

App.ko

inference/
nt predictions

(b)

Source: “KML: Using Machine Learning to Improve Storage Systems”,

https://arxiv.org/pdf/2111.11554.pdf

24

k-MLib.ko

Kernel Machine Learning

e Kernel—-space has more data to access, no data transfer to
user—space.

e Kernel—-space is more real—time hence more accurate.

e Kernel—-space has floating point restrictions.

e Kernel—-space has less tolerance for CPU or memory
overhead.

@ Linux kernel is written in C (or Rust).

25

Kernel Machine Learning

e Kernel disables FP to minimize context switching overhead.

e (Quantization can help reduce computational and memory overheads, but it
reduces accuracy.

e Fixed—point representation works within fixed ranges which can result in
numerical instability.

o kernel fpu begin()/kernel fpu end() are already used in RAID and crypto

code.

26

I Kernel Machine Learning

e Page prefetching

e |/0 scheduling

e CPU load balance

e (Caching eviction

e Network congestion control

e Intrusion detection

27

Conclusions

e We envision machine learning is important for OS optimizations.
e Although there are |imitations, we believe that kernel machine learning

is not only possible but also necessary.

28

I Acknowledgement

e Jasmine Mou
e Krz Sywula
e Bobby Eshleman

e Yaxin Chen

29

THANKS

lii| ByteDance ZFTiBlkzN

