
Linux Kernel Autotuning
Cong Wang, Jasmine Mou
System Technologies & Engineering

1

1. Why Autotuning
2. Why Machine Learning
3. Machine Learning Approaches for Optimization
4. Statistical Performance Evaluation
5. Our Use Cases
6. Kernel Machine Learning

2

Disclaimer

● Please don’t ask me machine learning questions. 🤡
● I am trying to kill our jobs, just kidding…

3

Why Autotuning?

● Liberate human engineers from tuning performance for each individual

workload.

● Make better decisions with historical data when humans struggle.

● Find a more optimal solution than current heuristic method for a

specific workload.

● How:

○ Rule based/heuristics

○ Machine learning based

4

Why Machine Learning?

5

Why Machine Learning?

6

Machine Learning for OS

Source: http://learningsys.org/nips17/assets/slides/dean-nips17.pdf

7

Machine Learning for OS

Source: https://github.com/torvalds/linux/blob/master/mm/readahead.c#L552

8

Machine Learning for OS

Source: https://github.com/torvalds/linux/blob/master/net/ipv4/tcp_cubic.c#L214

9

Machine Learning for OS

Source: https://github.com/torvalds/linux/blob/master/kernel/sched/fair.c#L3063

10

Machine Learning for OS

Approach Goal Implementations

Hardcode Unchangeable TCP_INIT_CWND

procfs/sysfs/netlink
etc.

Update kernel values ip route change ...
initcwnd 10

eBPF Update kernel code with
user-written program

bpf_setsockopt(TCP_BPF
_IW)

Machine Learning Update kernel code with
learned program from
data

Kernel machine learning?

11

Increased
Automation

Machine Learning for OS

● Why: Machine Learning algorithms will help explore the potential of new

solutions that rule-based approaches don't cover.

● How Machine Learning helps Operating System:

○ Prediction: based on the historical performance, predicts the

future value.

○ Root cause analysis: look back into the historical data and apply

retrospective analysis to diagnose potential cause.

○ Classification: classify problems into different categories.

○ Optimization: recommend best parameters to take for a specific

workload.

12

Machine Learning Approaches for Optimization

● Problem definition

○ Definition: Find the best system parameters Xs to optimize the

value of metric Y.

○ Parameters X: the system parameters that are tunable in the system.

■ Examples: TCP initial window, vm.watermark_scale_factor

○ Metric Y: the observable metric y that changes accordingly.

■ Examples: Service latency, Throughput, Resource utilization

● Machine learning approaches: Stateless & Stateful

13

Machine Learning Approaches for Optimization

14

Machine Learning Approaches for Optimization

● Stateless vs Stateful

○ Stateless: Stateless machine learning algorithms don't retain the

memory of past inputs or iterations during the training process,

and each prediction is made based solely on the current inputs.

○ Stateless optimization algorithms don't need to track previous

evaluations of the objective functions to proceed with its search

for optimum.

■ Example: Linear Regression/Random Search/Grid Search

■ When to use: simple scenario with very limited parameters

tune; good for baseline setup, real time tuning.

■ Application: adaptivemm tuning (Linear Regression), nginx

tuning - baseline setup (Random Search/Grid Search).

15

Machine Learning Approaches for Optimization

● Stateless vs Stateful

○ Stateful: Stateful machine learning algorithms maintain the form of

state or memory across individual data points over time.

○ Specifically for optimization algorithms, they maintain and utilize

the information from past evaluations of objective functions to

guide the search for the optimal solution.

■ Examples: Bayesian Optimization/Genetic Algorithm/Simulated

Annealing/Evolutionary Algorithm

■ When to use: non-real-time tuning, better result

■ Application: nginx tuning (Bayesian optimization)

16

Statistical Performance Evaluation

Data distribution comparisons

● To evaluate performance tuning results over the metrics, we utilize

statistical tools (quantitative) in addition to data visualization

(qualitative). We collect the metric results observed over the specified

duration, and transform them into data distributions for statistical

tools to compare.

● Ideally, the more dissimilar the two distributions are, the more

influential the tuning is.

● When comparing data distributions, statistical approaches can be

categorized into parametric tests and nonparametric tests. Parametric

tests are based on assumptions about the distribution of population from

which the sample was taken. Nonparametric tests are not based on such

assumptions.

17

Statistical Performance Evaluation

Data distribution comparisons

● Parametric:

○ Unpaired t-test: a statistical test used to compare the means of

two independent samples. It assumes that the samples are drawn from

populations with approximately normal distributions and equal

variances. The unpaired t-test examines whether the means of the

two samples differ significantly.

○ ANOVA: a statistical test used to compare the means of three or

more independent groups or treatments. It determines whether there

are significant differences in means between the groups.

18

Statistical Performance Evaluation

Data distribution comparisons

● Nonparametric:

○ Kruskal Wallis Test: a nonparametric test used to determine if

there are statistically significant differences between three or

more independent groups.

○ KS Test: a non-parametric test that measures the "distance" between

two samples; it compares the empirical cumulative distribution

functions (CDFs) of the two samples.

○ KL Divergence: a measure of dissimilarity between two probability

distributions. It quantifies how one distribution differs from a

reference or target distribution.

19

Use Case - DAMON

● DAMON is a Linux kernel subsystem for memory access monitoring and

optimization

● DAMON scheme has some parameters to specify target access pattern

(size, age, and access frequency) of memory regions

● We used simple adapter to search for the best scheme for MySQL

application. It runs different DAMON schemes and compares their

performance using RSS and MySQL QPS metrics

● Applying DAMON in combination with zram to identify and page out cold

memory achieves about 30% of memory reduction

20

https://www.kernel.org/doc/html/latest/mm/damon/index.html
https://github.com/awslabs/damoos/blob/main/scheme_adapters/simple_adapter/README.md

Use Case - Nginx

● What to optimize: HTTP latency on NGINX server

● What to tune: 16 kernel sysctl parameters

21

Use Case - Nginx

● How to evaluate the performance:

● each individual data point won’t get a constant value due to random noise;

● yet collective data points will form a data distribution across time, which is

more convenient for observation and comparisons.

Legend:
Default Parameter Set
Parameter Set 1
Parameter Set 2

22

Data Distribution plots of avg
and p99 of HTTP latency

X-axis: HTTP latency
Y-axis: density

Use Case - Nginx
● The results of metric HTTP latency under different parameter sets

○ We utilize benchmarking tool wrk to launch tests for HTTP latency

23

No. Description Comments Run Time per
data point

HTTP
Latency (ms)

Percentage
Improvement

1 Expert Manual Testing (37) NA 30 min 2.66 Baseline

2

Auto Tuning with
Bayesian Optimization

Acquisition Function = UCB 17 min 2.97 -11.6 %

3 Acquisition Function = POI
With prior knowledge 17 min 2.57 3.4 %

4 Acquisition Function = UCB
With prior knowledge 17 min 2.46 7.5 %

5 Acquisition Function = EI
With prior knowledge 17 min 2.44 8.2 %

6
Acquisition Function = EI
With prior knowledge
Better handling integer nature

17-20 min 2.34 12 %

Kernel Machine Learning

Source: “KML: Using Machine Learning to Improve Storage Systems”,
https://arxiv.org/pdf/2111.11554.pdf

24

● Kernel-space has more data to access, no data transfer to

user-space.

● Kernel-space is more real-time hence more accurate.

● Kernel-space has floating point restrictions.

● Kernel-space has less tolerance for CPU or memory

overhead.

● Linux kernel is written in C (or Rust).

Kernel Machine Learning

25

Kernel Machine Learning

● Kernel disables FP to minimize context switching overhead.

● Quantization can help reduce computational and memory overheads, but it

reduces accuracy.

● Fixed-point representation works within fixed ranges which can result in

numerical instability.

● kernel_fpu_begin()/kernel_fpu_end() are already used in RAID and crypto

code.

26

Kernel Machine Learning

● Page prefetching

● I/O scheduling

● CPU load balance

● Caching eviction

● Network congestion control

● Intrusion detection

27

Conclusions

● We envision machine learning is important for OS optimizations.

● Although there are limitations, we believe that kernel machine learning

is not only possible but also necessary.

28

Acknowledgement

● Jasmine Mou

● Krz Sywula

● Bobby Eshleman

● Yaxin Chen

29

THANKS
.

30

