
Philipp Ahmann, Robert Bosch GmbH

With work from ELISA contributors:
Alessandro Carminati (Red Hat), Maurizio Papini (Red Hat),
Shefali Sharma, Shuah Khan (LF), Stefano Stabelllini (Xilinx/AMD),
Sudip Mukherjee (Codethink), Thomas Mittelstädt (Robert Bosch GmbH),

Putting Linux into Context
Towards a reproducible example system
with Linux, Zephyr & Xen

Product Manager for Embedded Open Source

Chair of the Technical Steering Committee

Lead of the Systems Working Group

Member of the Inaugural Advisory Board

OSS enthusiast and promoter

whoami

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

SAFETY … don’t mix it up with SECURITY

Work in Progress - License: CC-BY-4.0

P
re

m
ie

r

M
e
m

b
e
rs

G
e
n
e
ra

l

M
e
m

b
e
rs

A
s
s
o

c
ia

te

M
e

m
b

e
rs

In
d

u
s
tr

y

S
u

p
p

o
rt

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0 Photo by Mike Kiev on Unsplash

“The mission of the project is

to define and maintain a common

set of elements, processes and tools

that can be incorporated into

Linux-based, safety-critical systems

amenable to safety certification.”

from the technical charter

https://unsplash.com/@mike_kiev?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/Opzk_hvwO9Q?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://elisa.tech/wp-content/uploads/sites/75/2020/08/elisa_technical_charter_082620.pdf

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

“The mission of the project is

to define and maintain a common

set of elements, processes and tools

that can be incorporated into

Linux-based, safety-critical systems

amenable to safety certification.”

from the technical charter

Safety Architecture
Open Source
Engineering Process

Linux Features

/

Working Groups (WGs) - Horizontal

7

Tool investigation &
Code Improvement

Systems

Tool investigation &
Code Improvement

Systems

Photo by Mike Kiev on Unsplash

https://elisa.tech/wp-content/uploads/sites/75/2020/08/elisa_technical_charter_082620.pdf
https://unsplash.com/@mike_kiev?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/Opzk_hvwO9Q?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

from the technical charter

Working Groups (WGs) - Verticals

8

Aerospace

Medical Devices

Automotive

Dana Lewis‘ OpenAPS project: https://youtu.be/kgu-AYSnyZ8

OpenAPS elements

1. Continuous

glucose monitor

2. Computer

3. Battery

4. Radio stick

5. Insulin pump

Photo by Mike Kiev on Unsplash

https://elisa.tech/wp-content/uploads/sites/75/2020/08/elisa_technical_charter_082620.pdf
https://youtu.be/kgu-AYSnyZ8
https://unsplash.com/@mike_kiev?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/Opzk_hvwO9Q?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

“Linux differs from a ‘traditional’

safety critical OS,…

but both face challenges in modern

complex system setups.”

Photo by Jukan Tateisi on Unsplash

https://unsplash.com/@tateisimikito?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/bJhT_8nbUA0?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Clash of worlds
(or what is often considered unsafe by safety experts):

- Memory management

- Dynamic memory allocation

- Caches

- Interrupt handling

- Real time scheduling

- …

Photo by Jukan Tateisi on Unsplash

https://unsplash.com/@tateisimikito?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/bJhT_8nbUA0?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Tools + Documentation help to

understand complex systems better

- STPA

- strace and csope for workload tracing

- ks-nav (graphical representation kernel sources)

- real-time analysis

Photo by Jukan Tateisi on Unsplash

https://unsplash.com/@tateisimikito?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/bJhT_8nbUA0?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf

System

Theoretic

Process

Analysis

https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

STPA – Basics

● Relatively new hazard analysis technique

● Very complex systems can be analyzed

● Iterative towards detailed design decisions

● Includes software and human operators

● Provides documentation of system functionality

● Can be easily integrated into (model-based)

system engineering process

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

STPA – Basics

4 key elements

● Controller sends

● Control Action(s) to a

● Controlled Process which provides

● Feedback to a controller

A controlled process can be a controller.

Q: What can be unsafe control actions?

Controller

Control

Algorithm

Process

Model

Controlled

Process

Control

Action Feedback

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

STPA – In action (example for OpenAPS)

Level 2

OpenAPS System

OpenAPS System

15https://docs.google.com/spreadsheets/d/1vIKNM4hKV3FRt1w9BEt0t7bFgYYgivH3JUsuoe5RmTo

https://docs.google.com/spreadsheets/d/1vIKNM4hKV3FRt1w9BEt0t7bFgYYgivH3JUsuoe5RmTo

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

STPA – In action (example for OpenAPS)

OpenAPS System

Level 2

16

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Deeper level of analysis required workload tracing

Main tools used:

● strace

● cscope

Extract information:

● System Call

● Frequency of call

● Involved Subsystem

● System Call Entry Point

System Call Frequency Linux Subsystem System Call Entry Point (API)

read 3 Filesystem sys_read()

write 11 Filesystem sys_write()

close 41 Filesystem sys_close()

stat 24 Filesystem sys_stat()

fstat 2 Filesystem sys_fstat()

pread64 6 Filesystem sys_pread64()

access 1 Filesystem sys_access()

pipe 1 Filesystem sys_pipe()

dup2 24 Filesystem sys_dup2()

execve 1 Filesystem sys_execve()

fcntl 26 Filesystem sys_fcntl()

openat 14 Filesystem sys_openat()

rt_sigaction 7 Signal sys_rt_sigaction()

rt_sigreturn 38 Signal sys_rt_sigreturn()

clone 38 Process Mgmt. sys_clone()

wait4 44 Time sys_wait4()

mmap 7 Memory Mgmt. sys_mmap()

mprotect 3 Memory Mgmt. sys_mprotect()

munmap 1 Memory Mgmt. sys_munmap()

brk 3 Memory Mgmt. sys_brk()

getpid 1 Process Mgmt. sys_getpid()

getuid 1 Process Mgmt. sys_getuid()

getgid 1 Process Mgmt. sys_getgid()

geteuid 2 Process Mgmt. sys_geteuid()

getegid 1 Process Mgmt. sys_getegid()

getppid 1 Process Mgmt. sys_getppid()

arch_prctl 2 Process Mgmt. sys_arch_prctl()

https://github.com/elisa-tech/ELISA-White-Papers/blob/master/Processes/Discovering_Linux_kernel_subsystems_used_by_a_workload.md 17

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/syscalls.h
https://github.com/elisa-tech/ELISA-White-Papers/blob/master/Processes/Discovering_Linux_kernel_subsystems_used_by_a_workload.md

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Workload tracing documentation is mainlined.

● Understanding system resource necessary to

build and run a workload is important

● Linux tracing and strace can be used to

discover the system resource in use by a

workload

● Additional tools (like perf, stress-ng, paxtest)

can help to analyze performance and security

of the OS

● Credits to Shuah Khan & Shefali Sharma

for bringing it mainline

○ /Documentation/admin-guide/workload-tracing.rst

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/admin-guide/workload-tracing.rst

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Dynamic tracing is supported by Static Analysis Navigator (ks-nav tool)

● Supports the analysis

on code/kernel level

● Graphical representation

of source code

● Provides insights about

the Kernel construction

● Is there a good place upstream?

● Credits to Alessandro Carminati &

Maurizio Papini (both Red Hat)

19

https://github.com/elisa-tech/ks-nav

https://github.com/elisa-tech/ks-nav

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Use case centric vs. common/generic use of Linux (the core)

● Use cases bring a different point of view and

set context, but deal with similar problems

● Requires deep dives

● Deep dive from the past were e.g.:

○ PREEMPT_RT and how to not break it.

○ Real-time Linux analysis tool set.

● All results should end up in upstream

documentation

● Helps system integrators to build safe

software and improve Kernel quality

Important topics for potential deep-dives:

● Synchronization / timing

● Interrupt and exception management

● Resource access management

● Dynamic memory allocation

● Inter process communication &

inter processor communication

● System initialization

● Kernel configuration & trimming

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Possible next documentation: Admin guide for PREEMPT_RT

● PREEMPT_RT mostly upstream, but documentation on use can still be

improved.

○ Nothing available so far in the admin-guide kernel documentation.

● Shuah Khan and Elana Copperman presented first results.

○ RT Linux in Safety Critical Systems: the potential and the challenges

● The Linux Features for Safety-Critical Systems (LFSCS) within ELISA is

looking for support by PREEMPT_RT users/experts to bring this forward!

https://www.youtube.com/watch?v=WStVB6RkCfs

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0
Photo by Onur Binay on Unsplash Photo by Roberto Nickson on UnsplashPhoto by Scott Ymker on Unsplash

https://unsplash.com/@onurbinay?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/vacuum-cleaner-robot?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@rpnickson?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/self-driving-car?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@scottymker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/agriculture-selfdriving?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Interaction with other communities (outside of ELISA)

23

● Open source projects focusing on safety-critical analysis

● Open source projects with safety-critical relevance

and comparable system architecture considerations

● Further community interactions

“If you have an apple and I have an
apple and we exchange these apples
then you and I will still each have
one apple.
But if you have an idea and I have an
idea and we exchange these ideas,
then each of us will have two ideas.”

― George Bernard Shaw

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

SOAFEE Architecture Vision

https://architecture.docs.soafee.io/en/latest/contents/architecture.html

https://architecture.docs.soafee.io/en/latest/contents/architecture.html

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

“When it comes to prototyping systems,

the existing guidelines are limited;

reproducing demos is hard and time consuming.”

Photo by Natalia Y. on Unsplash

https://unsplash.com/@foxfox?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/Oxl_KBNqxGA?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0 Photo by Natalia Y. on Unsplash

https://unsplash.com/@foxfox?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/Oxl_KBNqxGA?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Content of the Xen end-to-end example

● Build a reference system with default tooling

○ Xen, Linux kernel & rootfs and Zephyr

○ Use ImageBuilder for bootable configuration

○ Xen Device Tree examples

● Give guidance on features (“steps”)

○ Static partitioning

○ Device Assignment

○ Cache Coloring

○ Shared Memory and Event Channels

○ PV drivers

Xen

LinuxRT
Linux
Dom0

Zephyr

27

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0 Photo by S. Tsuchiya on Unsplash

“A product will run on real hardware.”

https://unsplash.com/fr/@s_tsuchiya?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/sPLLVFJXlb8?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Challenges

● New hardware

● Community support

● OS distro

● Tools & CI

● Proprietary drivers

● Images

● SBOM

Photo by Rob Wicks on Unsplash

https://unsplash.com/@robwicks?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/yVuRzuqArkg?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Big thanks to…

Thomas Mittelstädt

● Robert Bosch GmbH

● Brings 30 years of experience at multiple

operating systems and at build & integration

systems. He provides trainings,

documentation and technical support to

various kind of Bosch users.

Sudip Mukherjee

● Codethink

● He has been a mainline kernel contributor

since 2014. Sudip is also a Debian

Developer and has worked in multiple

automotive projects for Codethink’s clients.

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Major challenges during setup of XEN systems

● Select target board with

○ Hardware support for XEN, especially SMMU controller

○ XEN community support

○ Documentation for build and setup

○ Licenses compliant to OSS project

● Setup of Yocto build environment

○ Amount of computer resources

○ Network and Host dependencies

● Finding valid descriptions

● Build image parts based on descriptions

● Finding community support at occurring build problems

● Understanding XEN setup and structure

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Evaluated targets

● Renesas RCAR 3.0 family

(link to Wiki of eLinux)

+ XEN hardware support

+ Functional XEN systems (also graphic)

- Proprietary licenses for essential parts like

graphic

- Not available at standard market

● Xilinx Zynqmp and Ultrascale family

(link to product page)

+ XEN hardware support

+ Functional XEN systems

+ Good documentation and open source support

of Xilinx

- Graphic at Zcu102 atm not able to be handled by

XEN

- Zcu102 well supported, but additional complexity

due to FPGA programming

https://elinux.org/R-Car/Boards/H3SK
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Evaluated targets – cont.

● Qemu systems for Xilinx

(link with some hints for setup with XEN at Xilinx boards)

+ XEN support

+ Functional XEN systems

+ no hardware needed

- Only for development, not for hardware related demo cases

● Raspberry Pi systems

- Hardware support not sufficient for security requirements of XEN

● NXP i.mx8 systems

+ Good hardware support for hypervisor like XEN

- Less community support

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2552201222/Building+Xen+Hypervisor+with+PetaLinux+2022.2

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Used hardware

● Board ZCU102 (link to description)

○ Reference manual (link)

○ SD card 16GB for boot loader

○ USB Stick 16GB for demonstrator setup

○ USB-Ethernet-Adapter (DLINK)

● Environment for setup

○ Local DHCP server (VM with system networkd)

○ Putty for serial console

○ USB Keyboard (for TTY console)

○ HDMI screen

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/support/documents/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Overview of the XEN example system

Hardware

ZCU 102

Demo setups

SD Card

USB Stick

USB ethernet

adapter

Local

network with

DHCP

Putty (serial

console)

Bootloader

Simple

Petalinux

XEN system

Apertis

(Debian)

Zephyr

Xilinx Yocto

2022.2 for XEN

BSP v2022.2 Zcu

102

RCAR

demonstrator

(meta-xt-prod-

devel-rcar)

Apertis Build

Building Xen

Hypervisor with

PetaLinux 2022.2

Local

Ethernet

Build

sources

Local tools

SW parts

Hardware

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/1696137838/Building+Xen+Hypervisor+through+Yocto+Flow
https://www.xilinx.com/member/forms/download/xef.html?filename=xilinx-zcu102-v2023.1-05080224.bsp
https://github.com/xen-troops/meta-xt-prod-devel-rcar
https://www.apertis.org/guides/image_building/
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2552201222/Building+Xen+Hypervisor+with+PetaLinux+2022.2

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

External parts of system images

● Xen Hypervisor (link for build description)

○ Image, ramdisk, device tree

○ Boot.bin

● Petalinux (link for binaries from "BSP")

○ Image, ramdisk, (device tree: not used for XEN)

● Zephyr (atm got from demo for Renesas RCAR, link for build description)

○ Image

○ Configuration file for XEN

● XEN configuration files (created on description at link)

● Apertis (Debian based, specific image, but general build instructions at link)

○ Image, ramdisk, (device tree: not used for XEN)

● XEN image builder (link for download and usage)

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/1696137838/Building+Xen+Hypervisor+through+Yocto+Flow
https://www.xilinx.com/member/forms/download/xef.html?filename=xilinx-zcu102-v2023.1-05080224.bsp
https://github.com/xen-troops/meta-xt-prod-devel-rcar
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2552201222/Building+Xen+Hypervisor+with+PetaLinux+2022.2
https://www.apertis.org/guides/image_building/
https://gitlab.com/xen-project/imagebuilder

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

CI enablement: https://gitlab.com/elisa-tech/systems-wg-ci

Runs

daily

Build & packages

Artifacts download of recent images

https://gitlab.com/elisa-tech/systems-wg-ci

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

meta-elisa: Various starting points provided

● Plain and native from source
https://github.com/elisa-tech/meta-elisa

● Using docker container
https://github.com/elisa-tech/wg-automotive/

tree/master/Docker_container

● With cached build using SSTATE
modify “conf/local.conf“ after the "source" command

before the "bitbake” command

● Download binaries directly from build server
https://gitlab.com/elisa-tech/meta-elisa-ci

38https://elisa.tech/blog/2023/04/05/elisa-ci-enablement-automation-tools-for-easier-collaboration/

https://github.com/elisa-tech/meta-elisa
https://github.com/elisa-tech/wg-automotive/tree/master/Docker_container
https://github.com/elisa-tech/wg-automotive/tree/master/Docker_container
https://github.com/elisa-tech/meta-elisa/wiki/Troubleshooting#i-receive-a-warning-when-enabling-sstate-cache
https://github.com/elisa-tech/meta-elisa/wiki/Troubleshooting#i-receive-a-warning-when-enabling-sstate-cache
https://gitlab.com/elisa-tech/meta-elisa-ci/-/jobs
https://elisa.tech/blog/2023/04/05/elisa-ci-enablement-automation-tools-for-easier-collaboration/

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Pipeline dependencies

Full description in the blog
https://elisa.tech/blog/2023/04/05/elisa-ci-enablement-

automation-tools-for-easier-collaboration/

https://elisa.tech/blog/2023/04/05/elisa-ci-enablement-automation-tools-for-easier-collaboration/
https://elisa.tech/blog/2023/04/05/elisa-ci-enablement-automation-tools-for-easier-collaboration/

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Sources
Generated

Image
Build Image

Docker
image

Docker file

Pipeline flow

consumes consumes consumes consumes

Limitations of the current implementation.

Features

Availability

CostsPure Linux system “meta-elisa”:

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

● QEMU increases availability, lowers costs, but misses some features (like HW interfaces)

● Uncovered topics:

System diversity, hardware prototyping, virtual GPU performance, “real µC” involvement

From hardware to qemu (again?!)

&

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0 Photo by Ana Municio on Unsplash

Open questions…

● What is a good hardware to extend the PoC

scope?

● Are there further existing examples where open

source, security, safety and compliance come best

together?

● Which alternative real-time operating system and

virtualization should be incorporated?

https://unsplash.com/de/@lamunix?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/graue-und-braune-steine-auf-grauem-grund-PbzntH58GLQ?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Benefits provided by the ELISA project

● Provide system engineering and safety competencies

○ Workload tracing upstream in kernel mainline

○ Tools for kernel analysis in ELISA github repo

● Provide a start into safety critical system creation

○ Hosting seminars to educate system creators/integrators

○ Create a knowledge base around Linux in safety critical environments

○ Provide a working example system for easy start into system creation

● Want to get much more of this system experience upstream

Work in Progress - License: CC-BY-4.0Work in Progress - License: CC-BY-4.0

Where do we want to do, where do we need help, … (path to grow)

Completed example

“workload tracing”

Ongoing activity

“PREEMPT_RT guide”

Planned work

“reproducible example

system”

Future activities

“critical kernel core

components docu”

Available inputs

(to work on task)

- RT and RT tooling deep dives Interaction with Xen and

Zephyr community

none yet!

Target activity Tools to get a better

understanding

Creating a SBOM and

porting to yocto

Provide a guide on how to

work with real time inside the

kernel

Help people understand

to create complex Linux

based systems

Identification of mission

critical kernel parts

supporting safety of

products

Where we could need

help

Help in porting the

Raspbian demo to Yocto

incl. kernel build

Contribution from

PREEMPT_RT users to

create the document

Proposals for well

supported community

hardware with HV support

Deep dives into special

topics:

- memory, interrupts, …

Place for the results Documentation in Kernel

admin-guide

yocto with SBOM for

openAPS commuity

Documentation in Kernel

admin-guide

ELISA project github - Kernel patches

- Documentation in

admin-guide

- manpages

	Intro
	Slide 1
	Slide 2

	Elisa Intro
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Working Groups (WGs) - Horizontal
	Slide 8: Working Groups (WGs) - Verticals
	Slide 9: “Linux differs from a ‘traditional’ safety critical OS,… but both face challenges in modern complex system setups.”
	Slide 10: Clash of worlds (or what is often considered unsafe by safety experts): - Memory management - Dynamic memory allocation - Caches - Interrupt handling - Real time scheduling - …

	STPA & Workload tracing
	Slide 11: Tools + Documentation help to understand complex systems better - STPA - strace and csope for workload tracing - ks-nav (graphical representation kernel sources) - real-time analysis
	Slide 12
	Slide 13: STPA – Basics
	Slide 14: STPA – Basics
	Slide 15: STPA – In action (example for OpenAPS)
	Slide 16: STPA – In action (example for OpenAPS)
	Slide 17: Deeper level of analysis required workload tracing
	Slide 18: Workload tracing documentation is mainlined.
	Slide 19: Dynamic tracing is supported by Static Analysis Navigator (ks-nav tool)
	Slide 20: Use case centric vs. common/generic use of Linux (the core)
	Slide 21: Possible next documentation: Admin guide for PREEMPT_RT

	System perspective
	Slide 22
	Slide 23: Interaction with other communities (outside of ELISA)
	Slide 24: SOAFEE Architecture Vision

	Example System
	Slide 25: “When it comes to prototyping systems, the existing guidelines are limited; reproducing demos is hard and time consuming.”
	Slide 26
	Slide 27: Content of the Xen end-to-end example
	Slide 28: “A product will run on real hardware.”
	Slide 29: Challenges
	Slide 30: Big thanks to…
	Slide 31: Major challenges during setup of XEN systems
	Slide 32: Evaluated targets
	Slide 33: Evaluated targets – cont.
	Slide 34: Used hardware
	Slide 35: Overview of the XEN example system
	Slide 36: External parts of system images
	Slide 37: CI enablement: https://gitlab.com/elisa-tech/systems-wg-ci
	Slide 38: meta-elisa: Various starting points provided
	Slide 39: Pipeline dependencies
	Slide 40: Limitations of the current implementation.
	Slide 41: From hardware to qemu (again?!)
	Slide 42: Open questions…

	Outlook
	Slide 43: Benefits provided by the ELISA project
	Slide 44: Where do we want to do, where do we need help, … (path to grow)
	Slide 45

