

Optimizing synchronization
primitives in Wine

Zeb Figura
Linux Plumbers Conference 2023

About me
● Wine developer for ~6 years
● Wine work on multimedia, 3D, Win16, sockets,

hardware, kernel…
● One kernel patch
● Employed by CodeWeavers

– We do consulting and porting using Wine

Wine’s “kernel”

wineserver

Host kernel (Linux)

ntdll.dll

MM
file I/O
sockets
signals
futex

sync
IPC (pipes)
windows
registry
handles

Wine userspace “user”

“kernel”

What are handles?

What are handles?
● A handle is a file descriptor

– But need not be a file

● Handles can have names
– \??\some\path

● Handles have access flags
– Objects can have ACLs

● Handles are per-process
– But they can be shared across

processes

● Many different types:
– Event
– Mutex
– Semaphore
– Timer
– Thread
– Process
– File
– Pipe
– Socket
– Window message queue

The easy parts
● Events: NtSetEvent(), NtResetEvent()
● Mutexes: NtReleaseMutant()
● Semaphores: NtReleaseSemaphore()
● NtWaitForMultipleObjects()

– It’s like poll(2)
– ...but it consumes state

● Events: NtPulseEvent()
● Mutexes: abandonment (think EOWNERDEAD)
● Semaphores: ☺
● NtWaitForMultipleObjects()

– It can wait on “all”
– It can wait on an “alert” (Windows version of SIGIO)

The hard parts

Is there a user space solution?

esync
● Each object is backed by an eventfd(2)
● Extra state in shared memory
● Vectored wait via poll(2)

Easy Hard
 ✓ NtSetEvent()

 ✓ NtResetEvent()

 ✓ NtReleaseMutant()

 ✓ NtReleaseSemaphore()

 ✓ NtWaitForMultipleObjects()

 ✗ NtPulseEvent()

 ✓ Abandoned mutexes
✗ Wait-for-all

 ✓ Alertable wait

fsync
● Each object is backed by a futex word in shared memory
● Extra state in shared memory
● Vectored wait via futex_waitv(2)

Easy Hard
 ✓ NtSetEvent()

 ✓ NtResetEvent()

 ✓ NtReleaseMutant()

 ✓ NtReleaseSemaphore()

 ✓ NtWaitForMultipleObjects()

 ✗ NtPulseEvent()

 ✓ Abandoned mutexes
✗ Wait-for-all

 ✓ Alertable wait

● Events: NtPulseEvent()
● Mutexes: abandonment (think EOWNERDEAD)
● Semaphores: ☺
● NtWaitForMultipleObjects()

– It can wait on “all”
– It can wait on an “alert” (Windows version of SIGIO)

The hard parts - revisited

Handles revisited
● A handle is a file descriptor

– But need not be a file

● Handles can have names
– \??\some\path

● Handles can be dup’d
– NtDuplicateObject

● Handles have access flags
– Objects can have ACLs

● Many different types:
– Event
– Mutex
– Semaphore
– Timer
– Thread
– Process
– File
– Pipe
– Socket
– Window message queue

More benchmarks
server ntsync improvement

Call of Juarez 99.8 224.1 124.55%
Dirt 3 110.6 860.7 678.21%
Forza Horizon 5 108 160 48.15%
Total War Saga: Troy 109 146 33.94%
Metro 2033 164.4 199.2 21.17%
The Crew 26 51 96.15%
Resident Evil 2 26 77 196.15%
Anger Foot demo 69 99 43.48%
Lara Croft and the Temple of Osiris 141 326 131.21%
Tiny Tina’s Wonderlands 130 360 176.92%
Thanks to Dmitry Skvortsov, FuzzyQuills, OnMars

Solutions?
● Submit the driver upstream?

– May be the best way to match Windows performance...
● Extend existing APIs?

– But NT is ugly...
● Half-baked idea: fast user-space RPC?

– With a single context switch?
● This could have interesting use cases elsewhere in Wine...

● Something else?

More information
● https://www.winehq.org/
● https://repo.or.cz/linux/zf.git/shortlog/refs/heads/ntsync4
● https://repo.or.cz/wine/zf.git/shortlog/refs/heads/ntsync4
● zfigura@codeweavers.com

https://www.winehq.org/
https://repo.or.cz/linux/zf.git/shortlog/refs/heads/ntsync4
https://repo.or.cz/wine/zf.git/shortlog/refs/heads/ntsync4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

