
Linux Virtualization

Based Security

(LVBS)

Linux Plumbers Conference 2023

Thara Gopinath, Mickaël Salaün, James Morris

Agenda
 Architecture Overview

 Hyper-V Implementation

 KVM Implementation (Heki)

 Q&A

Architecture Overview

James Morris

Linux

Virtualization

Based Security

(LVBS)

Use virtualization to provide enhanced

security for the guest OS, leveraging the

hypervisor security boundary.

Linux

Virtualization

Based Security

(LVBS)

Protect the integrity of security-critical

guest structures.

Linux

Virtualization

Based Security

(LVBS)

Prevent bypass of guest security

mechanisms and policies.

Linux

Virtualization

Based Security

(LVBS)

Support a Trusted Execution Environment

(TEE) for running security applications

 Executable code integrity

 Key management

 Others

Rationale
 Bring mainline Linux to state of the art.

 Linux is trailing proprietary solutions

across Linux and other OSs.

 Attacks continue to evolve, along with

motivation levels.

LVBS

Architecture Open-source architecture for Linux.

Independent of:

 ISA

 Hypervisor

 VMM

 Security monitor

 TEE implementation

Approach
 Mainline acceptance across ecosystem is

critical to success

 Reference implementation (HEKI):

 KVM

 Linux kernel API

 Flexible kernel hardening policy

 We are seeking feedback and

collaboration.

Hyper-V Implementation

Thara Gopinath

Hyper-V based

System

Virtual

Secure Mode

(VSM)

Separate privileged execution environment

within a partition : Virtual Trust Level (VTL)

VSM Features

 Virtual Processor state isolation

 Memory access hierarchy and protection

 Virtual Interrupt and Intercept handling

 https://learn.microsoft.com/en-

us/virtualization/hyper-v-on-

windows/tlfs/vsm

https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/vsm
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/vsm
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/vsm

LVBS and VSM
 Kernel Hardening

o Hardening memory permissions (HVCI)

o Monitoring critical system registers and MSRs

o Monitoring critical kernel data structures

 Offloading policies (control flow

integrity, authentication)

 Offloading secure services (trustlets)

 Initial Target : Basic Kernel Hardening.

Threat Model:

Kernel Hardening

 Protect kernel from a user space attacker

exploiting a kernel vulnerability

 Assume that the attacker has arbitrary read

write access to guest kernel thanks to exploited

vulnerability by malicious
 User space process

 Network Packet

 Block Device

 Secure Boot is trusted.

 Defence in Depth ; but no extra features!!!

H/W

Requirements:
 Second Level Address Translation (SLAT, Two-

Dimensional Paging, AMD's RVI/NPT)

o Enable to manage VM memory and add a secondary complementary

layer of permissions only controlled by the hypervisor)

 CPU features that allow to differentiate

between kernel space and user space memory

(MBEC)

Architecture:

(Common Layer)

e.g. Hypervisor Enforced Kernel Integrity

(Heki)

Architecture:

Secure Kernel Small TCB

 Maintainability

 Ability to support secure interfaces

 Initial choice for secure kernel : Minimal

Linux Kernel

Architecture:

Control

Interfaces

Synchronous : Explicit VTL Call and Return

Asynchronous : Interrupt based entry and exit

Higher VTL gets precedence over lower VTL

Architecture:

Boot

 We trust secure boot !

 VTL0 guest kernel boots up VTL1 secure kernel

 Establish kernel hardening and other policies

with secure kernel prior to init process.

Architecture:

Boot Sequence

Architecture :

The Big Picture

(Boot)

Architecture:

The Big Picture

(Late Boot)

Architecture

(Access /

Policy

Violation)

Code https://github.com/heki-linux/lvbs-

linux/tree/secure-kernel-lvbs

 https://github.com/heki-linux/lvbs-

linux/tree/ubuntu-lvbs

https://github.com/heki-linux/lvbs-linux/tree/secure-kernel-lvbs
https://github.com/heki-linux/lvbs-linux/tree/secure-kernel-lvbs
https://github.com/heki-linux/lvbs-linux/tree/ubuntu-lvbs
https://github.com/heki-linux/lvbs-linux/tree/ubuntu-lvbs

KVM Implementation (Heki)

Mickaël Salaün

Architecture :

The Big Picture

RFC v2 patches Sent RFC v2:

• Guest kernel implementation of the
common API

• Two new KVM hypercalls: CR-pinning
and memory permission

• KVM interface with the VMM: dedicated
VM exits and related capabilities

https://lore.kernel.org/all/20231113022326.24388-1-mic@digikod.net/

CR-pinning

hypercall

Enforce a bitmask on control registers to

guard against locked features (e.g. SMEP)

kvm_hypercall3(KVM_HC_LOCK_CR_UPDATE,

0, // control register

X86_CR0_WP, // flag to pin

flags); // options

Can create a VM exit on configuration or

policy violation for the VMM to be able to

do something.

Generate a GP fault on policy violation.

Memory

protection

hypercall

Configure (a subset of) EPT permissions.

kvm_hypercall1(KVM_HC_PROTECT_MEMORY,

pa); // address of a pagelist

The pagelist atomically maps a set of

memory ranges with read, write and

execute permissions.

Generate a synthetic page fault on policy

violation.

Executable

permission(s)

Issue: efficiently enforce restriction on

kernel executable pages without

impacting access to user space pages

Solution: leverage Intel’s Mode Based

Execution Control (MBEC)

Split the execution permission into:

• Kernel mode execution

• User mode execution

Kernel memory

permissions

without MBEC

read-execute

read-only

read-execute

read-only

_text

_etext

___start_rodata

vdso_start

vdso_end

___end_rodata

0x0000…

0xFFFF…

executable

executable

executable

Kernel memory

permissions

with MBEC

read-execute

read-only

_text

_etext

___start_rodata

vdso_start

vdso_end

___end_rodata

0x0000…

0xFFFF…

non-executable

non-executable

non-executable

Code https://github.com/heki-linux/linux

branch heki-v2

https://github.com/heki-linux/linux/tree/heki-v2

Wrap up KVM and Hyper-V supports:

• defense-in-depth mechanism leveraging

hardware virtualization

• common API layer across hypervisors

Any feedback?

https://github.com/heki-linux

https://github.com/heki-linux

Q&A

Thank you

Demo: control-register pinning
(SMEP)

https://github.com/heki-linux/.github/raw/main/talks/2023-11-14%20demo%20Heki%20cr-pinning.webm
https://github.com/heki-linux/.github/raw/main/talks/2023-11-14%20demo%20Heki%20cr-pinning.webm

	Slide 1: Linux Virtualization Based Security (LVBS)
	Slide 2: Agenda
	Slide 3: Architecture Overview
	Slide 4: Linux Virtualization Based Security (LVBS)
	Slide 5: Linux Virtualization Based Security (LVBS)
	Slide 6: Linux Virtualization Based Security (LVBS)
	Slide 7: Linux Virtualization Based Security (LVBS)
	Slide 8: Rationale
	Slide 9: LVBS Architecture
	Slide 10: Approach
	Slide 11: Hyper-V Implementation
	Slide 12: Hyper-V based System
	Slide 13: Virtual Secure Mode (VSM)
	Slide 14: VSM Features
	Slide 15: LVBS and VSM
	Slide 16: Threat Model: Kernel Hardening
	Slide 17: H/W Requirements:
	Slide 18: Architecture: (Common Layer)
	Slide 19: Architecture: Secure Kernel
	Slide 20: Architecture: Control Interfaces
	Slide 21: Architecture: Boot
	Slide 22: Architecture: Boot Sequence
	Slide 23: Architecture : The Big Picture (Boot)
	Slide 24: Architecture: The Big Picture (Late Boot)
	Slide 25: Architecture (Access / Policy Violation)
	Slide 26: Code
	Slide 27: KVM Implementation (Heki)
	Slide 28: Architecture : The Big Picture
	Slide 29: RFC v2 patches
	Slide 30: CR-pinning hypercall
	Slide 31: Memory protection hypercall
	Slide 32: Executable permission(s)
	Slide 33: Kernel memory permissions without MBEC
	Slide 34: Kernel memory permissions with MBEC
	Slide 35: Code
	Slide 36: Wrap up
	Slide 37: Q&A
	Slide 38: Thank you
	Slide 39: Demo: control-register pinning (SMEP)
	Slide 40

