

Linux Perf Tool Metrics
Ian Rogers (Google) Weilin Wang (Intel)

2

Getting started

Linux

Perf Tool

Metrics

https://www.brendangregg.com/perf.html
https://jvns.ca/perf-zine.pdf

Getting started

Linux

Perf Tool

Metrics

https://www.brendangregg.com/perf.html
https://jvns.ca/perf-zine.pdf

Getting started

Linux

Perf Tool

Metrics

https://www.brendangregg.com/perf.html
https://jvns.ca/perf-zine.pdf

Getting started

Linux

Perf Tool

Metrics

?

Why metrics?

Events are good but have interesting properties:
● What are the units of a counter? Bytes, cache lines, cycles, instructions,

different clocks. Are speculative instructions counted?
● Perf will aggregate the same event across multiple PMUs (e.g. memory

controllers) and events can be scaled.

Metrics allow for multiple different counters to be combined across
different PMUs, incorporating things like time and outputting with human
readable units.

Metric Groups

Metric Metric Metric

Metric GroupsMetric Groups

EventEventEvent
EventEventEvent

EventEventEvent
EventEventEvent

PMUs

Memory Controller Last level cache CPU Interconnect

Collections of metrics

Event

$ ls /sys/bus/event_source/devices/cpu/events
branch-instructions cpu-cycles slots
branch-misses instructions topdown-bad-spec
bus-cycles mem-loads topdown-be-bound
cache-misses mem-stores topdown-fe-bound
cache-references ref-cycles topdown-retiring

How events are encoded

$ perf list --details
…
Metric Groups:

Backend: [Grouping from Top-down Microarchitecture Analysis Metrics
spreadsheet]
 tma_core_bound
 [This metric represents fraction of slots where Core non-memory issues
 were of a bottleneck]
 [max(0, tma_backend_bound - tma_memory_bound)]
 [tma_core_bound > 0.1 & tma_backend_bound > 0.2]
 tma_info_core_ilp
 [Instruction-Level-Parallelism (average number of uops executed when
 there is execution) per-core]
 [UOPS_EXECUTED.THREAD / (UOPS_EXECUTED.CORE_CYCLES_GE_1 / 2 if #SMT_on
 else UOPS_EXECUTED.CORE_CYCLES_GE_1)]
 tma_info_memory_l2mpki
 [L2 cache true misses per kilo instruction for retired demand loads]
 [1e3 * MEM_LOAD_RETIRED.L2_MISS / INST_RETIRED.ANY]
…

Seeing metric expressions

$ perf list --details
…
Metric Groups:

Backend: [Grouping from Top-down Microarchitecture Analysis Metrics
spreadsheet]
 tma_core_bound
 [This metric represents fraction of slots where Core non-memory issues
 were of a bottleneck]
 [max(0, tma_backend_bound - tma_memory_bound)]
 [tma_core_bound > 0.1 & tma_backend_bound > 0.2]
 tma_info_core_ilp
 [Instruction-Level-Parallelism (average number of uops executed when
 there is execution) per-core]
 [UOPS_EXECUTED.THREAD / (UOPS_EXECUTED.CORE_CYCLES_GE_1 / 2 if #SMT_on
 else UOPS_EXECUTED.CORE_CYCLES_GE_1)]
 tma_info_memory_l2mpki
 [L2 cache true misses per kilo instruction for retired demand loads]
 [1e3 * MEM_LOAD_RETIRED.L2_MISS / INST_RETIRED.ANY]
…

Seeing metric expressions

Metric expression

$ perf list --details
…
Metric Groups:

Backend: [Grouping from Top-down Microarchitecture Analysis Metrics
spreadsheet]
 tma_core_bound
 [This metric represents fraction of slots where Core non-memory issues
 were of a bottleneck]
 [max(0, tma_backend_bound - tma_memory_bound)]
 [tma_core_bound > 0.1 & tma_backend_bound > 0.2]
 tma_info_core_ilp
 [Instruction-Level-Parallelism (average number of uops executed when
 there is execution) per-core]
 [UOPS_EXECUTED.THREAD / (UOPS_EXECUTED.CORE_CYCLES_GE_1 / 2 if #SMT_on
 else UOPS_EXECUTED.CORE_CYCLES_GE_1)]
 tma_info_memory_l2mpki
 [L2 cache true misses per kilo instruction for retired demand loads]
 [1e3 * MEM_LOAD_RETIRED.L2_MISS / INST_RETIRED.ANY]
…

Seeing metric expressions

Threshold expression

max(0, tma_backend_bound - tma_memory_bound)

topdown-be-bound / (topdown-fe-bound + topdown-bad-spec +
topdown-retiring + topdown-be-bound) + 5 *

cpu@INT_MISC.RECOVERY_CYCLES,cmask=1,edge@ /
tma_info_thread_slots

TOPDOWN.SLOTS

(CYCLE_ACTIVITY.STALLS_MEM_ANY + EXE_ACTIVITY.BOUND_ON_STORES) /
(CYCLE_ACTIVITY.STALLS_TOTAL + (EXE_ACTIVITY.1_PORTS_UTIL +

tma_retiring * EXE_ACTIVITY.2_PORTS_UTIL) +
EXE_ACTIVITY.BOUND_ON_STORES) * tma_backend_bound

topdown\-retiring / (topdown\-fe\-bound + topdown\-bad\-spec +
topdown\-retiring + topdown\-be\-bound) + 0 * tma_info_thread_slots

The tma_core_bound metric

Where do the events and metrics come from?

csv

create_perf_json.py

Per architecture event json

json

json

Server metrics

TMA metrics spreadsheet

json

Perf json

https://github.com/intel/perfmon

jevents.py

json

Perf json from other architectures

C

Linux build
Github hosted
generator

pmu-events.c

LKML

Top-down Microarchitecture Analysis (TMA)

 TMA methodology

• Identifying performance bottlenecks in
out-of-order cores

• No requiring deep knowledge of the
microarchitecture details

• Available in Intel client and server platforms

 TMA in Linux Perf Tool

• Use `perf stat -M` to drill down

1. Intel® 64 and IA-32 Architectures Optimization Reference Manual, Appendix B.1
2. A. Yasin, A Top-Down method for performance analysis and counters architecture, ISPASS 2014

From: Intel® 64 and IA-32 Architectures Optimization Reference Manual

General TMA Hierarchy for Out-of-Order Microarchitecture

General TMA Hierarchy
From: Intel® 64 and IA-32 Architectures Optimization Reference Manual

Backend Bound

Core
Bound

49.0% 6.3% 0% 44.7%

43.4% 3.9%

Example: TMA Level Breakdown with Linux Perf Tool

perf stat -M TopdownL1

perf stat -M tma_backend_bound_group

TMA Level 2 Backend Bound Group

TMA Level 1

General TMA Hierarchy
From: Intel® 64 and IA-32 Architectures Optimization Reference Manual

Backend Bound

Core
Bound

49.0% 6.3% 0% 44.7%

43.4% 3.9%

perf stat -M tma_core_bound_group

perf stat -M tma_ports_utilization_group

TMA Level 4 Ports Utilization
Group

Po
rt

s
U

til
iz

at
io

n

…

59.4%

23.2% tma_ports_utilized_1

27.5% tma_ports_utilized_2

Example: TMA Level Breakdown with Linux Perf Tool

TMA Level 3
Core Bound
Group

$ perf stat true

 Performance counter stats for 'true':

 1.08 msec task-clock # 0.089 CPUs utilized
 1 context-switches # 926.027 /sec
 0 cpu-migrations # 0.000 /sec
 52 page-faults # 48.153 K/sec
 1,245,404 cycles # 1.153 GHz
 1,339,902 instructions # 1.08 insn per cycle
 269,832 branches # 249.872 M/sec
 7,143 branch-misses # 2.65% of all branches
 TopdownL1 # 24.6 % tma_backend_bound
 # 9.6 % tma_bad_speculation
 # 41.9 % tma_frontend_bound
 # 23.9 % tma_retiring

 0.012078534 seconds time elapsed

 0.000000000 seconds user
 0.003140000 seconds sys

Topdown is now present in perf stat default output
(for Icelake and newer models)

Optionality of metric thresholds

Metric thresholds are themselves metrics. This means more events may be
present when a threshold is computed which may cause event multiplexing.

To avoid multiplexing metric thresholds are computed:
● whenever all events are present,
● when a metric is explicitly requested except when –metric-no-threshold is

passed.

Going from counts to samples
Counters, metrics and their thresholds indicate performance issues but samples show
where in your code things are happening. Use “Sample with” from perf list to get the event
to use with perf record.

$ perf list -v
…

 tma_ports_utilized_1
 [This metric represents fraction of cycles where the CPU
 executed total of 1 uop per cycle on all execution ports
 (Logical Processor cycles since ICL, Physical Core cycles
 otherwise). This can be due to heavy data-dependency
 among software instructions; or over oversubscribing a
 particular hardware resource. In some other cases with
 high 1_Port_Utilized and L1_Bound; this metric can point
 to L1 data-cache latency bottleneck that may not
 necessarily manifest with complete execution starvation
 (due to the short L1 latency e.g. walking a linked list)
 - looking at the assembly can be helpful. Sample with:
 EXE_ACTIVITY.1_PORTS_UTIL. Related metrics: tma_l1_bound]
…

Going from counts to samples
Counters, metrics and their thresholds indicate performance issues but samples show
where in your code things are happening. Use “Sample with” from perf list to get the event
to use with perf record.

$ perf list -v
…

 tma_ports_utilized_1
 [This metric represents fraction of cycles where the CPU
 executed total of 1 uop per cycle on all execution ports
 (Logical Processor cycles since ICL, Physical Core cycles
 otherwise). This can be due to heavy data-dependency
 among software instructions; or over oversubscribing a
 particular hardware resource. In some other cases with
 high 1_Port_Utilized and L1_Bound; this metric can point
 to L1 data-cache latency bottleneck that may not
 necessarily manifest with complete execution starvation
 (due to the short L1 latency e.g. walking a linked list)
 - looking at the assembly can be helpful. Sample with:
 EXE_ACTIVITY.1_PORTS_UTIL. Related metrics: tma_l1_bound]
…

$ perf record -e EXE_ACTIVITY.1_PORTS_UTIL …

#EBS_Mode

Key part of TMA metrics is a measure of slots, number of functional units multiplied
by cycles, pre-Icelake there was no counter for this.
Hyperthreading complicated the slots calculation and counters were added
measuring when 1 or both hyperthreads were active.
EBS mode scaled metrics pre-Icelake accordingly, but was buggy unless in
system-wide mode (ie. when no scaling was necessary).
Because of the bugginess, the metrics are not enabled by default on pre-Icelake.
TopdownL1 and other metrics are available pre-Icelake but some caution should be
observed when measuring benchmarks as EBS mode will be implicitly used.

$ perf stat -a sleep 1

 Performance counter stats for 'system wide':

 24,081.38 msec cpu-clock # 23.984 CPUs utilized
 391 context-switches # 16.237 /sec
 25 cpu-migrations # 1.038 /sec
 68 page-faults # 2.824 /sec
 129,900,175 cpu_atom/cycles/ # 0.005 GHz (54.18%)
 16,045,550 cpu_core/cycles/ # 0.001 GHz
 19,513,883 cpu_atom/instructions/ # 0.15 insn per cycle (63.34%)
 8,909,751 cpu_core/instructions/ # 0.07 insn per cycle
 3,904,849 cpu_atom/branches/ # 162.152 K/sec (63.33%)
 1,870,930 cpu_core/branches/ # 77.692 K/sec
 662,455 cpu_atom/branch-misses/ # 16.96% of all branches (63.34%)
 98,623 cpu_core/branch-misses/ # 2.53% of all branches
 TopdownL1 (cpu_core) # 30.3 % tma_backend_bound
 # 8.4 % tma_bad_speculation
 # 49.6 % tma_frontend_bound
 # 11.7 % tma_retiring
 TopdownL1 (cpu_atom) # 20.8 % tma_bad_speculation (63.35%)
 # 37.7 % tma_frontend_bound (63.71%)
 # 35.4 % tma_backend_bound
 # 35.4 % tma_backend_bound_aux (64.11%)
 # 5.5 % tma_retiring (64.15%)

 1.004077587 seconds time elapsed

Support for hybrid processors

$ perf stat -a sleep 1

 Performance counter stats for 'system wide':

 24,081.38 msec cpu-clock # 23.984 CPUs utilized
 391 context-switches # 16.237 /sec
 25 cpu-migrations # 1.038 /sec
 68 page-faults # 2.824 /sec
 129,900,175 cpu_atom/cycles/ # 0.005 GHz (54.18%)
 16,045,550 cpu_core/cycles/ # 0.001 GHz
 19,513,883 cpu_atom/instructions/ # 0.15 insn per cycle (63.34%)
 8,909,751 cpu_core/instructions/ # 0.07 insn per cycle
 3,904,849 cpu_atom/branches/ # 162.152 K/sec (63.33%)
 1,870,930 cpu_core/branches/ # 77.692 K/sec
 662,455 cpu_atom/branch-misses/ # 16.96% of all branches (63.34%)
 98,623 cpu_core/branch-misses/ # 2.53% of all branches
 TopdownL1 (cpu_core) # 30.3 % tma_backend_bound
 # 8.4 % tma_bad_speculation
 # 49.6 % tma_frontend_bound
 # 11.7 % tma_retiring
 TopdownL1 (cpu_atom) # 20.8 % tma_bad_speculation (63.35%)
 # 37.7 % tma_frontend_bound (63.71%)
 # 35.4 % tma_backend_bound
 # 35.4 % tma_backend_bound_aux (64.11%)
 # 5.5 % tma_retiring (64.15%)

 1.004077587 seconds time elapsed

Support for hybrid processors

Per core type
breakdown

$ perf stat -a sleep 1

 Performance counter stats for 'system wide':

 24,081.38 msec cpu-clock # 23.984 CPUs utilized
 391 context-switches # 16.237 /sec
 25 cpu-migrations # 1.038 /sec
 68 page-faults # 2.824 /sec
 129,900,175 cpu_atom/cycles/ # 0.005 GHz (54.18%)
 16,045,550 cpu_core/cycles/ # 0.001 GHz
 19,513,883 cpu_atom/instructions/ # 0.15 insn per cycle (63.34%)
 8,909,751 cpu_core/instructions/ # 0.07 insn per cycle
 3,904,849 cpu_atom/branches/ # 162.152 K/sec (63.33%)
 1,870,930 cpu_core/branches/ # 77.692 K/sec
 662,455 cpu_atom/branch-misses/ # 16.96% of all branches (63.34%)
 98,623 cpu_core/branch-misses/ # 2.53% of all branches
 TopdownL1 (cpu_core) # 30.3 % tma_backend_bound
 # 8.4 % tma_bad_speculation
 # 49.6 % tma_frontend_bound
 # 11.7 % tma_retiring
 TopdownL1 (cpu_atom) # 20.8 % tma_bad_speculation (63.35%)
 # 37.7 % tma_frontend_bound (63.71%)
 # 35.4 % tma_backend_bound
 # 35.4 % tma_backend_bound_aux (64.11%)
 # 5.5 % tma_retiring (64.15%)

 1.004077587 seconds time elapsed

Support for hybrid processors

Multiplexing on Atom
due to insufficient
counters for both

topdown and branch
events

$ perf test -v validation

107: perf metrics value validation:
--- start ---
...
Workload: perf bench futex hash -r 2 -s
Total metrics collected: 200
Non-negative metric count: 200
Total Test Count: 100
Passed Test Count: 100
Test validation finished. Final report:
[
 {
 "Workload": "perf bench futex hash -r 2 -s",
 "Report": {
 "Metric Validation Statistics": {
 "Total Rule Count": 100,
 "Passed Rule Count": 100
 },
 "Tests in Category": {
 "PositiveValueTest": {
 "Total Tests": 200,
 "Passed Tests": 200,
 "Failed Tests": []
 },

 "RelationshipTest": {
 "Total Tests": 5,
 "Passed Tests": 5,
 "Failed Tests": []
 },
 "SingleMetricTest": {
 "Total Tests": 95,
 "Passed Tests": 95,
 "Failed Tests": []
 }
 },
 "Errors": []
 }
 }
]
test child finished with 0
---- end ----
perf metrics value validation: Ok

Validation tests

Ongoing technical
challenges

Event grouping and hardware counters

Counters:

Event1 Event2
Invalid Grouping:

Event1 Counter: 1,2,3

Event2 Counter: 1,2,3

Counters:

Metric1: Event1, Event2, Event3, Event4

Metric2: Event3, Event4, Event5

Metric3: Event1, Event5

Event5 Counter: 1,2,3

Event3

…

C1 C2

Group 1

Group 2 Event3 Event4 Event5

Group 3 Event1 Event5

Event4

C3

Functional and Better Grouping:
Event1 Event2

Event3 Event4

Group 1

Group 2

Event3

Event5

Functional but Inefficient Grouping:
Event1 Event2

Event3 Event4

Event1 Event5

Group 1

Group 2

Group 3 Event5

Event3

Event4

Group 4

Event grouping and hardware counters

Counters:

Event1 Event2
Invalid Grouping:

Event1

Event2

Counters:

Metric1: Event1, Event2, Event3, Event4

Metric2: Event3, Event4, Event5

Metric3: Event1, Event5

Event5

Event3

…

C1 C2

Group 1

Group 2 Event3 Event4 Event5

Group 3 Event1 Event5

Event4

C3

Functional and Better Grouping:
Event1 Event2

Event3 Event4

Group 1

Group 2

Event3

Event5

Functional but Inefficient Grouping:
Event1 Event2

Event3 Event4

Event1 Event5

Group 1

Group 2

Group 3 Event5

Event3

Event4

Group 4

Counter: 1,2,3

Counter: 1,2,3

Counter: 1,2,3

Event grouping and hardware counters

Counters:

Event1 Event2
Invalid Grouping:

Event1 Counter: 1,2

Event2 Counter: 1,2

Counters:

Metric1: Event1, Event2, Event3, Event4

Metric2: Event3, Event4, Event5

Metric3: Event1, Event5

Event5 Counter: 1,2

Event3

…

C1 C2

Group 1

Group 2 Event3 Event4 Event5

Group 3 Event1 Event5

Event4

C3

Functional and Better Grouping:
Event1 Event2

Event3 Event4

Group 1

Group 2

Event3

Event5

Functional but Inefficient Grouping:
Event1 Event2

Event3 Event4

Event1 Event5

Group 1

Group 2

Group 3 Event5

Event3

Event4

Group 4

Counter: 1,2,3

Counter: 1,2,3

Counter: 1,2,3

Event grouping and hardware counters

Counters:

Event1 Event2
Invalid Grouping:

Event1 Counter: 1,2

Event2 Counter: 1,2

Counters:

Metric1: Event1, Event2, Event3, Event4

Metric2: Event3, Event4, Event5

Metric3: Event1, Event5

Event5 Counter: 1,2

Event3

…

C1 C2

Group 1

Group 2 Event3 Event4 Event5

Group 3 Event1 Event5

Event4

C3

Functional and Better Grouping:
Event1 Event2

Event3 Event4

Group 1

Group 2

Event3

Event5

Functional but Inefficient Grouping:
Event1 Event2

Event3 Event4

Event1 Event5

Group 1

Group 2

Group 3 Event5

Event3

Event4

Group 4

Counter: 1,2,3

Counter: 1,2,3

Counter: 1,2,3

Event grouping and hardware counters

Counters:

Event1 Event2
Invalid Grouping:

Event1 Counter: 1,2

Event2 Counter: 1,2

Counters:

Metric1: Event1, Event2, Event3, Event4

Metric2: Event3, Event4, Event5

Metric3: Event1, Event5

Event5 Counter: 1,2

Event3

…

C1 C2

Group 1

Group 2 Event3 Event4 Event5

Group 3 Event1 Event5

Event4

C3

Functional and Better Grouping:
Event1 Event2

Event3 Event4

Group 1

Group 2

Event3

Event5

Functional but Inefficient Grouping:
Event1 Event2

Event3 Event4

Event1 Event5

Group 1

Group 2

Group 3 Event5

Event3

Event4

Group 4

Counter: 1,2,3

Counter: 1,2,3

Counter: 1,2,3

Event grouping and hardware counters

Counters:

Event1 Event2
Invalid Grouping:

Event1 Counter: 1,2

Event2 Counter: 1,2

Counters:

Metric1: Event1, Event2, Event3, Event4

Metric2: Event3, Event4, Event5

Metric3: Event1, Event5

Event5 Counter: 1,2

Event3

…

C1 C2

Group 1

Group 2 Event3 Event4 Event5

Group 3 Event1 Event5

Event4

C3

Functional and Better Grouping:
Event1 Event2

Event3 Event4

Group 1

Group 2

Event3

Event5

Functional but Inefficient Grouping:
Event1 Event2

Event3 Event4

Event1 Event5

Group 1

Group 2

Group 3 Event5

Event3

Event4

Group 4

Counter: 1,2,3

Counter: 1,2,3

Counter: 1,2,3

Hardware Aware Metric group Event Grouping

The key of FUNCTIONAL grouping is placing events to counters that support the
events and avoid oversubscribed group

Information required to be hardware counter aware:
● Describe all counter restrictions from events in JSON files
● Static counter availability of one platform could be described in JSON files
● Dynamic counter availability needs to be resolved

1. Standardized metrics and events defined in JSON files - Project Valkyrie: GitHub - intel/perfmon
2. Intel PMUs Event Reference: https://perfmon-events.intel.com/

https://github.com/intel/perfmon

Hardware Aware Metric group Event Grouping Details

1. “Perf stat metric grouping with hardware information” RFC Patch:
https://lore.kernel.org/all/20230925061824.3818631-1-weilin.wang@intel.com/

Output Result

● Generate metric
group grouping string

Load Data From PMU-EVENTS

● Build hardware counter
information: PMU and
counter availabilities

● Receive the event list of
requested metrics

● Read counter restrictions
of each event

Generate Groups

● For each event, find a group
for the correct PMU that has
space

● Fill it into the group base on
counter restrictions

● Create a new group if no
space available in all the
existing groups

Event Counter Restrictions for Reference:
1.Unit – The unit/core where the event is collected on.
2.Counter – The counters in the unit the event could be collected on and availability of the counters.
3.TakenAlone – TAKEN_ALONE event cannot be collected in the same group with any other TAKEN_ALONE events
4.Filter1 – Events collected in the same group need to have same filter1 value if applicable (SKX/CLX/CPX).
5.Fixed Counter – Do not group events use the same fixed counter in the same group.
6.OCR events – At most two OCR events in one group.

https://lore.kernel.org/all/20230925061824.3818631-1-weilin.wang@intel.com/#r

The key of GOOD grouping is high counter utilization and good
locality of events for metrics
● High counter utilization => Less number of total groups => More time

for each group - Improve the overall event and metric accuracy
● Good locality of events => Events that required by one metric in the

same or neighboring groups - Improve metric accuracy
● However, these are conflicting conditions in some cases

Discussion

Timed Processor Event Based Sampling (Timed PEBS)
● It records the number of unhalted core cycles between the

retirement of the current instruction and the retirement of the prior
instruction

● It significantly increases the accuracy of TMA
● IA32_PERF_CAPABILITIES.PEBS_TIMING_INFO[bit 17]
● Feature available in next generation Intel processors

Timed PEBS in perf tool
● Sampling mode - upstreamed

○ Retire_lat is enabled as a weight of PMU events in perf record
○ perf record -W -e event_name:P

● Counting mode - WIP
○ Retire_latency is included in some of the metrics in TMA for

processors that support Timed PEBS

Offset Field Name Bits

0x0 Record Format [31:0]

Retire Latency [47:32]

Record Size [63:48]

0x8 Instruction Pointer [63:0]

0x10 Applicable Counters [63:0]

0x18 TSC [63:0]

PEBS Basic Info Group

From: Intel® Architecture Instruction Set Extensions and Future Features

What is Timed PEBS?

Enabling counting mode for Timed PEBS
● “Retire Latency” field in the PEBS record requires sampling
● Counting mode solution requires both perf record and perf stat
● Proposed method is to fork perf record within perf stat
● Perf stat process sampling data and capture the retire latency value,

calculate and print out the final metric counts

perf stat

perf record

fork()
send sigterm

Counting and Sampling in Parallel

Counting mode Timed PEBS strategy

• Sampled timings plus counters gives greatest accuracy for metrics but at
the cost of using more counters.

• Current hard-coded values are for the worst case.

• Potential to use a variety of hard-coded values based on:

• Averages: mean, median

• Timings of similar benchmarks

• Periodic sampling of the system

• BPF vs perf record

Discussion

Questions

• Perf topdown

• Automate the drill down

• Perf record with the “Sample with”

• Support for non-CPU metrics

• ML in metrics, for example, I don’t have instructions but I have branches. As
there is usually a fixed ratio of branches to instructions can I swap a
counter I don’t have for one I do.

Future Work

Extra slides

