Richmond, Virginia | November 13-15, 2023

6 | Richmond, VA | Nov. 13-15, 2023

lan Rogers (Go gle) Weilin Wang (Intel)

| Richmond, VA | Nov. 13-15, 2023

Linux

Perf Tool

Metrics

What is using
all of my CPU?!

U : L=
perf lets you 9
Profile your Trace system calls

programs! ,With low overhead! “ang moret

Linux perf_events Event Sources

Dynamic Tracepoints syscalls: PMCs
Tracing
extd: sock: sched: cycles
Operating System task: instzuctions
signal:
Applications. / o branch-*
: L1-*
uprobes System Librarief /. LLC-*
System Call Interface / 4
Interconnect
VFS Sockets ¥ | schedler /] cPU
File Systems TCP/UDP. 1
kprobes lemem:
Volume Manager P Virtual < vmscan: Memory
[Block Device Interface | Ethernet 4 | | Memory, | writeback: Bua
Device Drivers_/ N [|
bd2: net: irq:
block: scsi: skb:
mem-load

Software Events cpu-clock page-faults
cs migrations minor-faults
major-faults

mem-store

https://www.brendangregg.com/perf.html
https://jvns.ca/perf-zine.pdf

| Richmond, VA | Nov. 13-15, 2023

Linux

Perf Tool

Metrics

What is using
all of my CPU?!

U : L=
perf lets you 9
Profile your Trace system calls

programs! ,With low overhead! “ang moret

Linux perf_events Event Sources

Dynamic Tracepoints syscalls: PMCs
Tracing
extd: sock: sched: cycles
Operating System task: instzuctions
signal:
Applications. / o branch-*
: L1-*
uprobes System Librarief /. LLC-*
System Call Interface / 4
Interconnect
VFS Sockets ¥ | schedler /] cPU
File Systems TCP/UDP. 1
kprobes lemem:
Volume Manager P Virtual < vmscan: Memory
[Block Device Interface | Ethernet 4 | | Memory, | writeback: Bua
Device Drivers_/ N [|
bd2: net: irq:
block: scsi: skb:
mem-load

Software Events cpu-clock page-faults

cs migrations minor-faults
major-faults

mem-store

https://www.brendangregg.com/perf.html
https://jvns.ca/perf-zine.pdf

| Richmond, VA | Nov. 13-15, 2023

Linux

Perf Tool

Metrics

What is using
all of my CPU?!

KT . Nl
perf lets you 9
Profile your Trace system calls

programs! ,With low overhead! “ang moret

Linux perf_events Event Sources

Dynamic Tracepoints syscalls: PMCs
Tracing
extd: sock: sched: cycles
Operating System task: instzuctions
signal:
Applications. / o branch-*
: L1-*
uprobes System Librarief /. LLC-*
System Call Interface / 4
Interconnect
VFS Sockets ¥ | schedler /] cPU
File Systems TCP/UDP. 1
kprobes lemem:
Volume Manager P Virtual < vmscan: Memory
[Block Device Interface | Ethernet 4 | | Memory, | writeback: Bua
Device Drivers_/ N [|
bd2: net: irq:
block: scsi: skb:
mem-load

Software Events cpu-clock page-faults
cs migrations minor-faults
major-faults

mem-store

https://www.brendangregg.com/perf.html
https://jvns.ca/perf-zine.pdf

| Richmond, VA | Nov. 13-15, 2023

Linux

Perf Tool

Metrics

| Richmond, VA | Nov. 13-15, 2023

Events are good but have interesting properties:
e What are the units of a counter? Bytes, cache lines, cycles, instructions,
different clocks. Are speculative instructions counted?
e Perf will aggregate the same event across multiple PMUs (e.g. memory
controllers) and events can be scaled.

Metrics allow for multiple different counters to be combined across
different PMUs, incorporating things like time and outputting with human
readable units.

N
>

6 | Richmond, VA | Nov. 13-15, 2023
Metric Groups >

__ L)

Metric Metric Metric
Memory Controller Last level cache Interconnect

PMUs
Event Event Event Event

| Richmond, VA | Nov. 13-15, 2023

$ 1ls /sys/bus/event source/devices/cpu/events
branch-instructions cpu-cycles slots
branch-misses instructions topdown-bad-spec

bus-cycles mem-1loads topdown-be-bound
cache-misses mem-stores topdown-fe-bound
Event cache-references ref-cycles topdown-retiring

linux / tools / perf / pmu-events / arch / x86 / meteorlake / memory.json

Code Blame 356 lines (356 loc) - 16.3 KB €3 Code 55% faster with GitHub Copilot
131 3

133 "BriefDescription": "Counts the number of memory ordering machine clears due to memory renaming.",
134 "EventCode": "Ox09",
135 "EventName": "MEMORY_ORDERING.MRN_NUKE",

136 "SampleAftervalue": "100003",
137 "UMask": "ox2",
138 "Unit": "cpu_core"

$ perf list --details

Seeing metric expressions

Metric Groups:

Backend: [Grouping from Top-down Microarchitecture Analysis Metrics
spreadsheet]
tma core bound
[This metric represents fraction of slots where Core non-memory issues
were of a bottleneck]
[max (0, tma backend bound - tma memory bound)]
[tma core bound > 0.1 & tma backend bound > 0.2]
tma info core ilp
[Instruction-Level-Parallelism (average number of uops executed when
there is execution) per-core]
[UOPS EXECUTED.THREAD / (UOPS EXECUTED.CORE CYCLES GE 1 / 2 if #SMT on
else UOPS EXECUTED.CORE CYCLES GE 1)]
tma info memory l12mpki
[L2 cache true misses per kilo instruction for retired demand loads]
[1le3 * MEM LOAD RETIRED.L2 MISS / INST RETIRED.ANY]

$ perf list --details

Seeing metric expressions

Metric Groups:

Backend: [Grouping from Top-down Microarchitecture Analysi
spreadsheet] Metric expression
tma core bound
[This metric represents fraction of slots where Core j PICINOry 1SSUES
were of a bottleneck]
[max (0, tma backend bound - tma memory bound)]
[tma core bound > 0.1 & tma backend bound > 0.2]
tma info core ilp
[Instruction-Level-Parallelism (average number of uops executed when
there is execution) per-core]
[UOPS EXECUTED.THREAD / (UOPS EXECUTED.CORE CYCLES GE 1 / 2 if #SMT_on
else UOPS EXECUTED.CORE CYCLES GE 1)]
tma info memory l12mpki
[L2 cache true misses per kilo instruction for retired demand loads]
[1le3 * MEM LOAD RETIRED.L2 MISS / INST RETIRED.ANY]

$ perf list --details

Seeing metric expressions

Metric Groups:

Backend: [Grouping from Top-down Microarchitecture Analysis §
spreadsheet]
tma core bound
[This metric represents fraction of slots where Core
were of a bottleneck]
[max (0, tma backend bound - tma memory bound)]
[tma core bound > 0.1 & tma backend bound > 0.2]
tma info core ilp
[Instruction-Level-Parallelism (average number of uops executed when
there is execution) per-core]
[UOPS EXECUTED.THREAD / (UOPS EXECUTED.CORE CYCLES GE 1 / 2 if #SMT_on
else UOPS EXECUTED.CORE CYCLES GE 1)]
tma info memory l12mpki
[L2 cache true misses per kilo instruction for retired demand loads]
[1le3 * MEM LOAD RETIRED.L2 MISS / INST RETIRED.ANY]

Threshold expression

| Richmond, VA | Nov. 13-15, 2023

max (0, tma backend bound - tma memory bound)

4____---llllllllllllll..L

(CYCLE ACTIVITY.STALLS MEM ANY + EXE ACTIVITY.BOUND ON STORES) /
(CYCLE ACTIVITY.STALLS TOTAL + (EXE ACTIVITY.1l PORTS UTIL +
tma retiring * EXE ACTIVITY.Z PORTS UTIL) +
EXE ACTIVITY.BOUND ON STORES) * tma backend bound

topdown-be-bound / (topdown-fe-bound + topdown-bad-spec +
topdown-retiring + topdown-be-bound) + 5 *
Cpu@INT MISC.RECOVERY CYCLES,cmask=1,edgel /
tma info thread slots

TOPDOWN.SLOTS

topdown\-retiring / (topdown\-fe\-bound + topdown\-bad\-spec +
topdown\-retiring + topdown\-be\-bound) + 0 * tma info thread slots

| Richmond, VA | Nov. 13-15, 2023

Per architecture event json

json

Github hosted

Server metrics generator LKML Linux build
json . json . C
create_perf_json.py — jevents.py
. Perf json pmu-events.c
TMA metrics spreadsheet
csv :
json

https://github.com/intel/perfmon Perf json from other architectures

Linux
Plumbers
Conference | Richmond, VA | Nov. 13-15, 2023

TMA methodology

General TMA Hierarchy for Out-of-0Order Microarchitecture

° Identlfylng perFOrmance bott'enecks |n l.,'.'_'_'.'_'.'_'_'_'_'_'.'_'_'_'_'_'_'_'_'_'_'.'_'_'_'_'_'_':_'_'_'_'_'_'_'.'_'.":,'.'_'_'_'_::'_'.'_'_'_'_'_'_'_'_'_'_'.'_'_'_'_'_'_'_'_'.'_'_'_'_'_'_'_:'_'_'_'_'_'_'_'_'_'_'_'_:
I e N
out-of-order cores
Retiring Bad Speculation Frontend Bound L Backend Bound
- No requiring deep knowledge of the ‘
1 1 1 Heavy Br?nch Machi Fetch —— g —
microarchitecture details lgheOperaions | Opera Mispre | ne Tl Tk Con, L Memncey
L) & ¢

- Available in Intel client and server platforms AR RRIEE
*‘”'gggga‘ﬁg 215l |ala 5 |o o <
S |
52"3‘@9 2z §§8 212 | & |elslolel5IE
Sil=l e Slelel £l alslv 2is w o |N HE B ERE
FHEEEE 58e28 e B2 855583
[7%] -
o0 e <822 3IE; a2 e e L A
w|olsl=l2l=|2 o —C @ %) o
TMA in Linux Perf Tool 223 2sf S8 E35 22 g gFN2E s
= a|3|c|z 2|5 -] a
==E] e s

From: Intel® 64 and IA-32 Architectures Optimization Reference Manual

- Use perf stat -M"to drill down

I Intel® 64 and IA-32 Architectures Optimization Reference Manual, Appendix B.1
2 A. Yasin, A Top-Down method for performance analysis and counters architecture, ISPASS 2014

Linux
Plumbers

Conference | Renmond vt 1 Nov 35,202 EXample: TMALevel Breakdown with Linux Perf Tool

P et N
perf stat -M TopdownL1 : Topbown Sots ;
B e e e e oS s S e e e s s s s ien i)
$ perf stat -M TopdownLl -a -C1 stress-ng --matrix 1 --taskset 1 -t 5s R e oA T e s s e e e s e e s T e B e e e H
stress-ng: info: [466696] setting to a 5 second run per stressor :________________fl_of'_sfa_”_e? ________________ J:__-_-_-_-__-_-_____-__;Sfa-ll_et_i_____-______---_-_-_-_—:
stress-ng: info: [466696] dispatching hogs: 1 matrix TMA\ Level 1 5 <
stress-ng: info: [466696] successful run completed in 5.00s (((
44.7% 0% 6.3% 49.0%
. (1] (1] . (1] (1]
Performance counter stats for 'system wide': — |)
Retiring Bad Speculation Frontend Bound Backend Bound
91,497,997,560 TOPDOWN. SLOTS # 49.0 % tma_backend_bound
0.0 % tma_bad_speculation |
6.3 % tma_frontend_bound
44.7 % tma_retiring
40,904,987,117 ‘topdown-retiring — ()
5,741,050,823 ‘topdoun-fe-bound H B h Machi 3'9 A)
51,959, 55: wn-be-| ea ranc aci
4{&,8>1,9>9,5>8 ‘topdoun-be-bound vy s Fetch Fetch Memory
5,741,050,823 topdown-heavy-ops Light Operations @ Opera | Mispre ne L
3,259 ‘topdown-bad-spec tions dicts Clears Lat: y B Bound
1,689,523 INT_MISC.UOP_DROPPING L \
5.090903464 seconds time elapsed . N %7
GG = Y
clo
c(%| 8w o0
Olc|c|lecll| =S) c
w = Q “u 0 [=) o <
g§§g§o§§ 333 gﬁ = Blilols|S B
£|2/8/3/85 2|8 815(8la (28 |w|aml|s =2 3|5/558 2
= S|2| S| |2 2151512 ER8la =
<|g9|8|T|8B|5 T e =9/E(S|3|2 8 5 a8lds 2
err stat -I" tma_packen oun rouv ala =g g5 |83 a|S5(7 |25 |2 g s
S - trllle) =lal=|g < — S g @ | % =) hur)] s} §
Slo|2|lals| |8 = ® Qs 4 o\ =
2 ElQ%T|o 8 = ol (81 N =} s ©» o
$ perf stat -M tma_backend_bound group -a -C1 stress-ng --matrix 1 --taskset 1 -t 5s =l g g o =2|S o a.
stress-ng: info: [501467] setting to a 5 second run per stressor =|x o & s
stress-ng: info: [501467] dispatching hogs: 1 matrix J —
stress-ng: info: [501467] successful run completed in 5.60s
Performance counter stats for 'system wide':
sszsize TS . war maemn | L_TMA Level 2 Backend Bound Group
3.9 % tma_memory_bound
42,347,151,768 topdown-retiring -
6,100,860,848 topdown-fe-bound G I TMA H hy
3,588,741,675 topdown-mem-bound en era Ie ra rc
43,423,774,271 topdown-be-bound . H . H .
: ey From: Intel ® 64 and IA-32 Architectures Optimization Reference Manual
5.091833553 seconds time elapsed

Linux
Plumbers

Conference | Richmond, VA | Nov. 13-15, 2023

perf stat -M tma_core_bound_group

stress-ng: info:
stress-ng: info:
stress-ng: info:

[841656] setting to a 5 second run per stressor
[841656] dispatching hogs: 1 matrix
[841656] successful run completed in 5.00s

$ perf stat -M tma_core_bound_group -a -C1 stress-ng --matrix 1 --taskset 1 -t Ss

o topdown-bad-spec

91,601,567 RESOURCE_STALLS . SCOREBOARD
2,518,236,344 Cpu/EXE_ACTIVITY.3_PORTS_UTIL,umask=0x80/
937,712,789 EXE_ACTIVITY.BOUND_ON_LOADS
18,868,356 ARITH.DIV_ACTIVE
3,428,017,600 EXE_ACTIVITY.1 PORTS_UTIL
15,255,053,374 CPU_CLK_UNHALTED. THREAD
6,727,671,296 Cpu/EXE_ACTIVITY.2_PORTS_UTIL,umask=@xc/
984,810,088 CYCLE_ACTIVITY.STALLS_TOTAL

5.893215942 seconds time elapsed

Performance counter stats for ‘system wide':
01,530,013,002 TOPDOWN. SLOTS # 0.1 % tma divider
59.4 % tma_ports_utilization
42,355,064,881 topdoun-retiring
5,743,059,644 topdown-fe-bound
3,589,412,278 topdown-mem-bound
43,431,888,565 topdown-be-bound

™

A Level 3

Core Bound

Group

perf stat -M tma_ports utilization_group

$ perf stat -M tma_ports_utilization group -a -C1 stress-ng --matrix 1 --taskset 1 -t 55
stress-ng: info: [854390] setting to a 5 second run per stressor

info: [854300] dispatching hogs: 1 matrix
stress-ng: info: [854390] successful run completed in 5.005

Performance counter stats for 'system wide':

23.2% tma_ports_u

01,271,408,118 TOPDOMN.SLOTS # 16.5% tmaports_utilized @

23.2% tma_ports_utilized 1

41.9% tmaports utilized 3m (33.31%)
42,593,323,786 topdoun-retiring (33.31%)
6,671,449,801 Cpu/EXE_ACTIVITY. 2_PORTS_|ITIL, umask=xc/ (33.31%)
1,127,395,785 CYCLE_ACTIVITY.STALLS_TOThL (33.31%)
91,369,045,193 TOPDORN. SLOTS # 27.5% tmaports utilized 2 (33.32%)
42,997,17,738 topdown-retiring TTIT

o con adn cac rndramn £n haind

133 >m

tilized_1

27.5% tma_ports_utilized_2

| TopDown Slots

447%

Retiring Bad Speculation Frontend Bound Backend Bound

L

Branch | Machi
Mispre ne
dicts Clears

3.9%

FeRvY Memory

Opera
tions

Fetch
Latency

Fetch

Light Operations Bandwidth

L

MITE
DSB
LSDA

PMM Bound”

FP-Arith.

Int Operations*
Memory Operations
Other Light Ops
iTLB Misses
iCache Misses
Branch Resteers
LCP
DSB Switches
MS Switches
DRAM Bound

Fused Instructions*
Non-fused Branches*
Nop Instructions
Few Uops Instructions
Microcode Sequencer

TMA Level 4 Ports Utilization
Group

General TMA Hierarchy

From: Intel ® 64 and 1A-32 Architectures Optimization Reference Manual

-~

Y) e

S perf stat true

(For Icelake and newer models)

Performance counter stats for 'true':

1.08 msec task-clock

1

0

52
1,245,404
1,339,902
269,832
7,143

context-switches
cpu-migrations
page-faults
cycles
instructions
branches
branch-misses
TopdownL1

0.012078534 seconds time elapsed

0.000000000 seconds user
0.003140000 seconds sys

H= FH= H HF

S oS S S S e 3

o® o o°

o)

o

(e

.089
.027
.000
.153
.153
.08
.872
.65%
tma backend bound

tma bad speculation
tma frontend bound

CPUs utilized
/sec

/sec

K/sec

GHz

insn per cycle
M/sec

of all branches

tma retiring

6 | Richmond, VA | Nov. 13-15, 2023

Metric thresholds are themselves metrics. This means more events may be
present when a threshold is computed which may cause event multiplexing.

To avoid multiplexing metric thresholds are computed:
e whenever all events are present,
e when a metric is explicitly requested except when -metric-no-threshold is
passed.

| Richmond, VA | Nov. 13-15, 2023
Counters, metrics and their thresholds indicate performance issues but samples show

where in your code things are happening. Use “Sample with” from perf list to get the event
to use with perf record.

S perf list -v

tma ports utilized 1
[This metric represents fraction of cycles where the CPU
executed total of 1 uop per cycle on all execution ports
(Logical Processor cycles since ICL, Physical Core cycles
otherwise). This can be due to heavy data-dependency
among software instructions; or over oversubscribing a
particular hardware resource. In some other cases with
high 1 Port Utilized and L1 Bound; this metric can point
to L1 data-cache latency bottleneck that may not
necessarily manifest with complete execution starvation
(due to the short L1 latency e.g. walking a linked list)
- looking at the assembly can be helpful.Sample with:
EXE ACTIVITY.1 PORTS UTIL. Related metrics: tma 11 bound]

| Richmond, VA | Nov. 13-15, 2023
Counters, metrics and their thresholds indicate performance issues but samples show

where in your code things are happening. Use “Sample with” from perf list to get the event
to use with perf record.

S perf list -v

tma ports utilized 1
[This metric represents fraction of cycles where the CPU
executed total of 1 uop per cycle on all execution ports
(Logical Processor cycles since ICL, Physical Core cycles
otherwise). This can be due to heavy data-dependency
among software instructions; or over oversubscribing a
particular hardware resource. In some other cases with
high 1 Port Utilized and L1 Bound; this metric can point
to L1 data-cache latency bottleneck that may not
necessarily manifest with complete execution starvation
(due to the short L1 latency e.g. walking a linked list)
- looking at the assembly can be helpful.Sample with:
EXE ACTIVITY.1 PORTS UTIL. Related metrics: tma 11 bound]

$ perf record -e EXE ACTIVITY.l PORTS UTIL ..

| Richmond, VA | Nov. 13-15, 2023

Key part of TMA metrics is a measure of slots, number of functional units multiplied
by cycles, pre-Icelake there was no counter for this.

Hyperthreading complicated the slots calculation and counters were added
measuring when 1 or both hyperthreads were active.

EBS mode scaled metrics pre-Icelake accordingly, but was buggy unless in
system-wide mode (ie. when no scaling was necessary).

Because of the bugginess, the metrics are not enabled by default on pre-lcelake.
TopdownL1 and other metrics are available pre-lcelake but some caution should be
observed when measuring benchmarks as EBS mode will be implicitly used.

Y S = == . N S

$ perf stat -a sleep 1

Support for hybrid processors

Performance counter stats for 'system wide':

24,081.38 msec cpu-clock # 23.984 CPUs utilized
391 context-switches # 16.237 /sec
25 cpu-migrations # 1.038 /sec
68 page-faults # 2.824 /sec
129,900,175 cpu_atom/cycles/ # 0.005 GHz (54.18%)
16,045,550 cpu_core/cycles/ # 0.001 GHz
19,513,883 cpu_atom/instructions/ # 0.15 1insn per cycle (63.34%)
8,909,751 cpu_core/instructions/ # 0.07 insn per cycle
3,904,849 cpu_atom/branches/ # 162.152 K/sec (63.33%)
1,870,930 cpu_core/branches/ # 77.692 K/sec
662,455 cpu_atom/branch-misses/ # 16.96% of all branches (63.34%)
98,623 cpu_core/branch-misses/ # 2.53% of all branches
TopdownLl (cpu core) # 30.3 % tma backend bound
8.4 % tma bad speculation
49.6 % tma frontend bound
11.7 $ tma retiring
TopdownLl (cpu_ atom) # 20.8 % tma bad speculation (63.35%)
37.7 % tma_ frontend bound (63.71%)
35.4 % tma backend bound
35.4 % tma backend bound aux (64.11%)
5.5 % tma retiring (64.15%)

1.004077587 seconds time elapsed

Y S = == . N S

$ perf stat -a sleep 1

Support for hybrid processors

Performance counter stats for 'system wide':

24,081.38 msec cpu-clock # 23.984 CPUs utilized
391 context-switches # 16.237 /sec
25 cpu-migrations # 1.038 /sec
68 page-faults # 2.824 /sec
129,900,175 cpu_atom/cycles/ # 0.005 GHz (54.18%)
16,045,550 cpu_core/cycles/ # 0.001 GHz
19,513,883 cpu_atom/instrujetes L 2.15 1insn per cycle (63.34%)

8,909,751 cpu_core/instru .07 1insn per cycle
3,904,849 cpu atom/branch .152 K/sec (63.33%)
1,870,930 cpu:core/branch Per core type .692 K/sec

662,455 cpu_atom/branch breakdown .96% of all branches (63.34%)

98,623 cpu_core/branch
TopdownLl (cpu core)

.53% of all branches
tma backend bound

oc &

tma bad speculation
49.6 % tma frontend bound
11.7 $ tma retiring

TopdownLl (cpu_ atom) # 20.8 % tma bad speculation (63.35%)
37.7 % tma_ frontend bound (63.71%)
35.4 % tma backend bound
35.4 % tma backend bound aux (64.11%)
5.5 % tma retiring (64.15%)

1.004077587 seconds time elapsed

Y S = == . N S

$ perf stat -a sleep 1

Support for hybrid processors

Performance counter stats for 'system wide':

24,081.38 msec cpu-clock 23.984 CPUs utilized

391 context-swi |\/|u|tip|exing on Atom 16.237 /sec
25 cpu-migrati due to insufficient 1.038 /sec
68 page-faults 2.824 /sec
129,900,175 cpu atom/cy counters for both : CHz (54.18%)
16,045,550 cpu:core/cy tOdeWﬂ and branch
19,513,883 cpu_atom/in events Thisn per cycle (63.34%)

8,909,751 cpu_core/in 0.07 insn per cycle
3, 904, 849 cpu_atom/brau\,uco/ ki 162.152 K/sec (63.33%)
1,870,930 cpu_core/branches/ # 77.692 K/sec
662,455 cpu_atom/branch-misses/ # 16.96% of all branches (63.34%)
98,623 cpu_core/branch-misses/ # 2.53% of all branches
TopdownLl (cpu core) # 30.3 % tma backend bound
8.4 % tma bad speculation
49.6 % tma frontend bound
11.7 $ tma retiring
TopdownLl (cpu_ atom) # 20.8 % tma bad speculation (63.35%)
37.7 % tma_ frontend bound (63.71%)
35.4 % tma backend bound
35.4 % tma backend bound aux (64.11%)
5.5 % tma retiring (64.15%)

1.004077587 seconds time elapsed

$ perf test -v validation

107: perf metrics value validation:
"RelationshipTest": {

-—-—- start ---
... "Total Tests": 5,
Workload: perf bench futex hash -r 2 -s "Passed Tests": 5,
Total metrics collected: 200 "Failed Tests": []
Non-negative metric count: 200 by
Total Test Count: 100 "SingleMetricTest": {
Passed Test Count: 100 "Total Tests": 95,
Test validation finished. Final report: "Passed Tests": 95,
["Failed Tests": []
{ }
"Workload": "perf bench futex hash -r 2 -s", },
"Report": { "Errors": []

"Metric Validation Statistics": { }
"Total Rule Count": 100, }
"Passed Rule Count": 100]
b, test child finished with 0
"Tests in Category": { --—— end ----
"PositiveValueTest": { perf metrics value validation: Ok
"Total Tests": 200,
"Passed Tests": 200,
"Failed Tests": []

IIIIIIIIIIIIIIIIIiilIlIlIIlIlIlIIlIlIlIIlIlIlIIlIlIlIIlIII

Linux

Ongoing technical
challenges

J

| Richmond, VA | Nov. 13-15, 2023

Metric1: Event1, Event2, Event3, Event4

z

Metric2: Event3, Event4, Event5

V4

Metric3: Event1, Event5

Counters:
C1 Cc2 C3

Counter: 1,2,3

U

Counter: 1,2,3

L@ fCounter: 1,2,3

Invalid Grouping:

Group 1
Group 2

Group 3

Event1 | Event2 | Event3 | Event4
Event3 | Event4 | Event5
Event1 | Event5

Functional but Inefficient Grouping:

Group 1
Group 2
Group 3

Group 4

Functional and Better Grouping:

Group 1

Group 2

Event1 | Event2 | Event3
Event4

Event3 | Event4 | Event5
Event1 | Event5

Event1

Event2

Event3

Event3

Event4

Event5

| Richmond, VA | Nov. 13-15, 2023

Metric1: Event1, Event2, Event3, Event4

z

Metric2: Event3, Event4, Event5

V4

Metric3: Event1, Event5

Counters:
C1 Cc2 C3

Counter: 1,2,3

U

Counter: 1,2,3

L@ fCounter: 1,2,3

Invalid Grouping:

Group 1
Group 2

Group 3

Event1 | Event2 | Event3 | Event4
Event3 | Event4 | Event5
Event1 | Event5

Functional but Inefficient Grouping:

Group 1
Group 2
Group 3

Group 4

Functional and Better Grouping:

Group 1

Group 2

Event1 | Event2 | Event3
Event4

Event3 | Event4 | Event5
Event1 | Event5

Event1

Event2

Event3

Event3

Event4

Event5

| Richmond, VA | Nov. 13-15, 2023

Metric1: Event1, Event2, Event3, Event4

z

Metric2: Event3, Event4, Event5

V4

Metric3: Event1, Event5

Counters:
C1 Cc2 C3

Counter: 1,2,3

U

Counter: 1,2,3

L@ 'rCounter: 1,2,3

Invalid Grouping:

Group 1
Group 2

Group 3

Event1 | Event2 | Event3 | Event4
Event3 | Event4 | Event5
Event1 | Event5

Functional but Inefficient Grouping:

Group 1
Group 2
Group 3

Group 4

Functional and Better Grouping:

Group 1

Group 2

Event1 | Event2 | Event3
Event4

Event3 | Event4 | Event5
Event1 | Event5

Event1

Event2

Event3

Event3

Event4

Event5

| Richmond, VA | Nov. 13-15, 2023

Metric1: Event1, Event2, Event3, Event4

z

Metric2: Event3, Event4, Event5

V4

Metric3: Event1, Event5

Counters:
C1 Cc2 C3

Counter: 1,2,3

U

Counter: 1,2,3

L@ 'rCounter: 1,2,3

Invalid Grouping:

Group 1
Group 2

Group 3

Event1 | Event2 | Event3 | Event4
Event3 | Event4 | Event5
Event1 | Event5

Functional but Inefficient Grouping:

Group 1
Group 2
Group 3

Group 4

Functional and Better Grouping:

Group 1

Group 2

Event1 | Event2 | Event3
Event4

Event3 | Event4 | Event5
Event1 | Event5

Event1

Event2

Event3

Event3

Event4

Event5

| Richmond, VA | Nov. 13-15, 2023

Metric1: Event1, Event2, Event3, Event4

z

Metric2: Event3, Event4, Event5

V4

Metric3: Event1, Event5

Counters:
C1 Cc2 C3

Counter: 1,2,3

U

Counter: 1,2,3

L@ 'rCounter: 1,2,3

Invalid Grouping:

Group 1
Group 2

Group 3

Event1 | Event2 | Event3 | Event4
Event3 | Event4 | Event5
Event1 | Event5

Functional but Inefficient Grouping:

Group 1
Group 2
Group 3

Group 4

Functional and Better Grouping:

Group 1

Group 2

Event1 | Event2 | Event3
Event4

Event3 | Event4 | Event5
Event1 | Event5

Event1

Event2

Event3

Event3

Event4

Event5

| Richmond, VA | Nov. 13-15, 2023

Metric1: Event1, Event2, Event3, Event4

z

Metric2: Event3, Event4, Event5

V4

Metric3: Event1, Event5

Counters:
C1 Cc2 C3

Counter: 1,2,3

U

Counter: 1,2,3

L@ 'rCounter: 1,2,3

Invalid Grouping:

Group 1
Group 2

Group 3

Event1 | Event2 | Event3 | Event4
Event3 | Event4 | Event5
Event1 | Event5

Functional but Inefficient Grouping:

Group 1
Group 2
Group 3

Group 4

Functional and Better Grouping:

Group 1

Group 2

Event1 | Event2 | Event3
Event4

Event3 | Event4 | Event5
Event1 | Event5

Event1

Event2

Event3

Event3

Event4

Event5

| Richmond, VA | Nov. 13-15, 2023

The key of FUNCTIONAL grouping is placing events to counters that support the
events and avoid oversubscribed group

Information required to be hardware counter aware:
e Describe all counter restrictions from events in JSON files
e Static counter availability of one platform could be described in JSON files
e Dynamic counter availability needs to be resolved

1. Standardized metrics and events defined in JSON files - Project Valkyrie:
2. Intel PMUs Event Reference: https:/perfmon-events.intel.com/

https://github.com/intel/perfmon

Linux
Plumbers
Conference | Richmond, VA | Nov. 13-15, 2023

Hardware Aware Metric group Event Grouping Details

Load Data From PMU-EVENTS

Generate Groups

Output Result

e Build hardware counter e foreachevent findagroup ¢ Generate metric

information: PMU and
counter availabilities space

for the correct PMU that has

group grouping string

e Receivetheeventlistof @ Fillitinto the group base on

requested metrics

counter restrictions

e Read counter restrictions ® Create a new group if no

of each event

space available in all the

existing groups

“Perf stat metric grouping with hardware information” RFC Patch:
https:/lore.kernel.org/all/20230925061824.3818631-1-weilinwang@intel.com/

Event Counter Restrictions for Reference:

1.Unit - The unit/core where the event is collected on.

2.Counter - The counters in the unit the event could be collected on and availability of the counters.
3TakenAlone - TAKEN_ALONE event cannot be collected in the same group with any other TAKEN_ALONE events
4 Filter! - Events collected in the same group need to have same filter! value if applicable (SKX/CLX/CPX).
5.Fixed Counter - Do not group events use the same fixed counter in the same group.

6.0CR events - At most two OCR events in one group.

https://lore.kernel.org/all/20230925061824.3818631-1-weilin.wang@intel.com/#r

Q | Richmond, VA | Nov. 13-15, 2023

The key of GOOD grouping is high counter utilization and good

locality of events for metrics
e High counter utilization => Less number of total groups => More time
for each group - Improve the overall event and metric accuracy
e Good locality of events => Events that required by one metric in the
same or neighboring groups - Improve metric accuracy
e However, these are conflicting conditions in some cases

| Richmond, VA | Nov. 13-15, 2023

Timed Processor Event Based Sampling (Timed PEBS)
e Itrecords the number of unhalted core cycles between the Offect
retirement of the current instruction and the retirement of the prior

instruction

0x0

|t significantly increases the accuracy of TMA
|IA32_PERF_CAPABILITIES.PEBS_TIMING_INFO[bit 17]
e Feature available in next generation Intel processors B:8

0x10

Timed PEBS in perf tool

e Sampling mode - upstreamed

0x18

o Retire_lat is enabled as a weight of PMU events in perf record
o perfrecord -W -e event_name:P
e Counting mode - WIP
o Retire_latency is included in some of the metrics in TMA for
processors that support Timed PEBS

Field Name

Record Format

Retire Latency

Record Size

Instruction Pointer

Applicable Counters

TSC

PEBS Basic Info Group

Bits

[31:01

[47:32]

[63:48]

[63:0]

[63:0]

[63:0]

From: Intel ® Architecture Instruction Set Extensions and Future Features

Q | Richmond, VA | Nov. 13-15, 2023

Enabling counting mode for Timed PEBS
e “Retire Latency” field in the PEBS record requires sampling

e Counting mode solution requires both perf record and perf stat

e Proposed method is to fork perf record within perf stat

e Perf stat process sampling data and capture the retire latency value,
calculate and print out the final metric counts

Counting and Sampling in Parallel

— perf stat —

\lork() send sigterm \ J
perf record

6 | Richmond, VA | Nov. 13-15, 2023

- Sampled timings plus counters gives greatest accuracy for metrics but at
the cost of using more counters.

» Current hard-coded values are for the worst case.
Potential to use a variety of hard-coded values based on:
- Averages: mean, median
« Timings of similar benchmarks
- Periodic sampling of the system

« BPF vs perf record

Linux
Plumbers
Conference | Richmond, VA | Nov. 13-15, 2023

Questions

6 | Richmond, VA | Nov. 13-15, 2023

- Perf topdown
« Automate the drill down
Perf record with the “Sample with”
Support for non-CPU metrics

ML in metrics, for example, | don't have instructions but | have branches. As
there is usually a fixed ratio of branches to instructions can | swap a
counter | don't have for one | do.

Richmond, Virginia | November 13-15, 2023

Linux
Plumbers
Conference | Richmond, VA | Nov. 13-15, 2023

Extra slides

