Improving kexec boot time

Usama Arif
System Technology & Engineering
LPC 2023, Richmond, VA

d' TikTok

Agenda

* Motivation

* Boot time improvement strategies
* Parallel smpboot
e Optimizing TSC synchronization
 streamline the initialization of struct pages when using HVO
* PCl probe skipping

* Is there anything more that can be done to improve kexec time?

Motivation

* VMs with extended running time in the cloud must operate
within a secure, updated hypervisor/host kernel.

* This improves:
* Security
* Functionality
* Performance

e Can be done with:
* Live migration
 Live update

Live migration

* Move the guest from one host to another

* Can be used to solve any hardware issues on machine being migrated
from

* Challenges:
* Resource use (networking, extra buffer machines..)
» Slowdown (for e.g. network faults if using post-copy)
* Things going wrong during live migration (error recovery)

Live update

e Update host kernel, while staying on the same machine.

* Advantages:
* No need for extra hardware (buffer machines)
* No need to migrate VM/workloads to another network
e Storage data can be easily accessed afterwards

* |ssues:
e Cannot be used if for hardware issues, only updating kernel/VMM
e High downtime (solvable?)
* Preserving IOMMU states during kexec for vfio-pci devices
* https://sched.co/15jLX
* Downtime from applications restarting DPDK/SPDK applications
* https://sched.co/17v0u

https://sched.co/15jLX
https://sched.co/17v0u

Reasons for downtime

* VM pause

* VM shapshot

» Kexec reboot (largest time)
* VM restore

* VM resume

Measuring downtime

* Total downtime
* Downtime in continuous data transfer from guest VM to external
machine
* Kernel boot time
* Kernel timestamp from first log with kernel version to running /init

* Test machine
e 128 Intel Xeon CPUs
e 2 sockets, 2 NUMA nodes

* 512G memory

Initial boot time

| I Il |

923 ms: Policy zone: Normal
923 ms: mem auto-init: stack:off, heap alloc:off, heap free:off

923.1 ms: software 10 TLB: area num 128.

1914.1 ms: Memory: 527899072K/536517308K available (12288K kernel code, 1035K rwdata, 3104K rodata, 1912K init, 1836K bss, 8617980K reserved, 0K cma-reserved)
1914.8 ms: SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=128, Nodes=2

1915.5 ms: Dynamic Preempt: none

1916 ms: rcu: Preemptible hierarchical RCU implementation.

Total: 4305 ms

* Each bar in the above chart represents a timestamp log

* Total time 4.3 seconds
* Biggest time: Initialization of struct pages (1.7 seconds — 40%)

Defer initialization of struct pages
| I | R

1091.2 ms: MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more
1091.2 ms: #65 #66 #67 #68 #69 #70 #71 #72 #73 #74 #75 #76 #77 #78 #79 #80 #81 #82 #83 #84 #85 #86 #87 #88 #89 #90 #91 #92 #93 #94 #95
1487.1 ms: node #1, CPUs: #96 #97 #98 #99 #100 #101 #102 #103 #104 #105 #106 #107 #108 #109 #110 #111 #112 #113 #114 #115#116 #117 #118 #119 #120 #121 #122 #123 #124 #125 #126 #127
1893.7 ms: smp: Brought up 2 nodes, 128 CPUs

1893.7 ms: smpboot: Max logical packages: 2

1893.7 ms: smpboot: Total of 128 processors activated (530700.57 BogoMIPS)

1983 ms: node 0 deferred pages initialised in 88m:

Total: 2733 ms

e Total time 2.7 seconds

* CONFIG_DEFERRED _STRUCT PAGE_INIT: defer initialization of struct
pages from single thread at boot to parallel when kswapd starts

* Biggest time left: smpboot (1.5s)

SMP boot

enum cpuhp state {

* SMP boot took place LA

/* PREPARE section invoked on a control CPU */

Seria”y CPUHP_OFFLINE = 0,
* Most time in SMP boot Lcpure_sp krck ae)

CPUHP_BRINGUP_CPU,

taken by waking each CPU /o

* STARTING section invoked on the hotplugged CPU in low level

(SIPI/INIT/INIT) and 1/bringup and teardown code.
Waltlng for the CPU tO CPUHP AP IDLE DEAD,

CPUHP_AP ONLINE,

respond before moving to AT G B
/* Online section invoked on the hotplugged CPU from the hotplug thread */
neXt CPU CPUHP AP ONLINE IDLE,

CPUHP_ONLINE,

Parallel smpboot

* Proposed by David Woodhouse
https://lore.kernel.org/all/20211215145633.5238-1-dwmw2 @infradead.org

Rather than kick a CPU and wait for it to come online one by one, kick them all and wait for
them to reach synchronization point

Resolve certain dependencies
Had issues with APIC in AMD CPUs

* Picked up later when it was occupying the largest chunk in boot time for us:
* https://lore.kernel.org/all/20230328195758.1049469-1-usama.arif@bytedance.com
* Didn’t have proper synchronization analysis
* Microcode loading didn’t meet x86 requirements

 Reworked by Thomas Gleixner (and merged!)
e https://lore.kernel.org/all/20230512203426.452963764@linutronix.de
* Included patch for reusing CPUO delay calibrations for secondary CPUs

https://lore.kernel.org/all/20211215145633.5238-1-dwmw2@infradead.org
https://lore.kernel.org/all/20230328195758.1049469-1-usama.arif@bytedance.com
https://lore.kernel.org/all/20230512203426.452963764@linutronix.de/

Parallel SMP boot
RN I | F N e ml

428.1 ms: ACPI: 6 ACPI AML tables successfully acquired and loaded

448.8 ms: ACPI: Dynamic OEM Table Load:

492.9 ms: ACPI: Dynamic OEM Table Load:

597.2 ms: ACPI: Interpreter enabled

597.2 ms: ACPI: PM: (supports SO S5)

597.2 ms: ACPI: Using IOAPIC for interrupt routing

597.3 ms: PCI: Using host bridge windows from ACPI; if necessary, use "pci=nocrs" and report a bug

Total: 1085 ms

e Kernel boot time: 2.7s -> 1s
e SMP boot time 1.7s -> 60ms

Hugepages

 Several 1G hugepages reserved at boot time for DPDK/SPDK
applications

* Effect of reserving 500 1G hugepages (worst case):

| || Y I H L0 i

26.4 ms: Policy zone: Normal

26.4 ms: mem auto-init: stack:off, heap alloc:off, heap free:off

26.5 ms: software 10 TLB: area num 128.

1291.7 ms: Memory: 1808176K/536517308K available (12288K kernel code, 1035K rwdata, 3112K rodata, 1944K init, 1792K bss, 532906052K reserved, 0K cma-reserved)
1292.7 ms: SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=128, Nodes=2

1293.4 ms: Dynamic Preempt: none

1293.9 ms: rcu: Preemptible hierarchical RCU implementation.

Total: 3888 ms

HVO (Hugepage Vmemap Optimize)

e 262144 struct pages initialized per 1G hugepage

* Memory optimization to not use struct page for every physical page
frame

* Only the first PAGE_SIZE/sizeof(struct page) (64) struct pages are
needed

* Rest of the tail pages contain same information
* HVO frees them and returns them to the buddy allocator
 Why initialize these struct pages if they are to be freed later??

* https://lore.kernel.org/linux-mm/20230913105401.519709-1-
usama.arif@bytedance.com/

https://lore.kernel.org/linux-mm/20230913105401.519709-1-usama.arif@bytedance.com/
https://lore.kernel.org/linux-mm/20230913105401.519709-1-usama.arif@bytedance.com/

HVO (Hugepage Vmemap Optimize)
il W | Weny p

284.3 ms: acpiphp: ACPI Hot Plug PCI Controller Driver version: 0.5

284.3 ms: PCI: Using configuration type 1 for base access

290.7 ms: kprobes: kprobe jump-optimization is enabled. All kprobes are optimized if possible.
652.3 ms: HugeTLB: registered 1.00 GiB page size, pre-allocated 500 pages

652.3 ms: HugeTLB: 16380 KiB vmemmap can be freed for a 1.00 GiB page

652.3 ms: HugeTLB leglslel ed 2.00 MiB page size, ple alloca[ed 0 pages

652.3 ms: HugeTLB: 28 KiB vmemmap can be fre a) MiB page

Total: 1333 ms

e Total boot time: 3.95s -> 1.3s

 Struct page initiailization time reduced by 2.6 seconds

Specialized optimizations

e Total VM downtime (1.5-2 seconds)
e Kernel boot represents approximately 70% (1 second)

* Low latency applications like machine learning and networking still
impacted.

* p99 latency > 100ms triggers alerts on databases
* Would still be noticed by VMs deployed for public clouds?
* Can do more?

Disable purgatory in kexec

* Code that runs between the old and new kernel
* Checks SHA256 checksum of new kernel, making sure its not corrupted

* Submitted patch to disable purgatory (by default enabled)

e https://lore.kernel.org/lkm|/20211206164724.2125489-1-
usama.arif@bytedance.com/

* Reduces downtime by 200ms (approx. 20% of downtime)

* Patch rejected as saving of 200ms not considered enough to justify
disabling checksum

* Probably OK in production environments where its less likely go
wrong??

https://lore.kernel.org/lkml/20211206164724.2125489-1-usama.arif@bytedance.com/
https://lore.kernel.org/lkml/20211206164724.2125489-1-usama.arif@bytedance.com/

PCI device probe skipping

* Test machine has 57 unique PCl devices

[0.667049] PCI host bridge to bus 0000:00

[] A” Of them actua”y needed? [0.780903] pci 0000:ff:1le.7: Adding to _%9["1'.'}{ group 305
~120ms
* Probing + adding to IOMMU groups take
time
[0.688391] PCI host bridge to bus 0000:00
* Only 15 needed to boot the host and . g
. . [0.735899] pci 0000:ff:0e.7: Adding to iommu group 89
provide networking and storage to VM ~aons

* Specify in kernel command line which
devices are needed.

* 120ms to 40ms
* Disclaimer: Not general purpose.

Remaining time

.] e

)70 ms \dded OSI(3.0 SCP Extensi

,—“’ﬂn \(PI: Added OSI(P ggregato [):-‘-. ce)

428.1 ms: ACPI: 6 ACPI AML mblLs successfully acquired and loaded
448.8 ms: ACPI: Dynamic OEM Table Load:

492.9 ms: ACPI: Dynamic OEM Table Load:

597.2 ms: ACPI: Interpreter enabled

597.2 ms: ACPI: PM: (supports SO S5)

597.2 ms: ACPI: Using IOAPIC for interrupt routing

597.3 ms: PCI: Using host bridge windows from ACPI; if necessary, use "pci=nocrs" and report a bug
597.3 ms: PCI: Using E820 reservations for host bridge windows
606.9 ms: ACPI: Enabled 5 GPEs in block 00 to 7

* |nitial struct page initialization: 110ms

* ACPI operations (301ms):

Includes AML table loads (100ms), OEM table loads, enabling interpreter (100ms),
finding idle states

Conclusion and future work

* |s the community interested in PCl whitelist/blacklist during
0oot?

* Restart purgatory discussion?
* ACPl improvements?

Thanks!

