
Improving kexec boot time
Usama Arif

System Technology & Engineering
LPC 2023, Richmond, VA

Agenda

•Motivation
• Boot time improvement strategies
• Parallel smpboot
• Optimizing TSC synchronization
• streamline the initialization of struct pages when using HVO
• PCI probe skipping

• Is there anything more that can be done to improve kexec time?

Motivation

• VMs with extended running time in the cloud must operate
within a secure, updated hypervisor/host kernel.
• This improves:
• Security
• Functionality
• Performance

• Can be done with:
• Live migration
• Live update

Live migration

• Move the guest from one host to another
• Can be used to solve any hardware issues on machine being migrated

from
• Challenges:
• Resource use (networking, extra buffer machines..)
• Slowdown (for e.g. network faults if using post-copy)
• Things going wrong during live migration (error recovery)

Live update

• Update host kernel, while staying on the same machine.
• Advantages:

• No need for extra hardware (buffer machines)
• No need to migrate VM/workloads to another network
• Storage data can be easily accessed afterwards

• Issues:
• Cannot be used if for hardware issues, only updating kernel/VMM
• High downtime (solvable?)
• Preserving IOMMU states during kexec for vfio-pci devices

• https://sched.co/15jLX
• Downtime from applications restarting DPDK/SPDK applications

• https://sched.co/17v0u

https://sched.co/15jLX
https://sched.co/17v0u

Reasons for downtime

• VM pause
• VM snapshot
• Kexec reboot (largest time)
• VM restore
• VM resume

Measuring downtime

• Total downtime
• Downtime in continuous data transfer from guest VM to external

machine
• Kernel boot time
• Kernel timestamp from first log with kernel version to running /init

• Test machine
• 128 Intel Xeon CPUs
• 2 sockets, 2 NUMA nodes
• 512G memory

Initial boot time

• Each bar in the above chart represents a timestamp log
• Total time 4.3 seconds
• Biggest time: Initialization of struct pages (1.7 seconds – 40%)

Defer initialization of struct pages

• Total time 2.7 seconds
• CONFIG_DEFERRED_STRUCT_PAGE_INIT: defer initialization of struct

pages from single thread at boot to parallel when kswapd starts
• Biggest time left: smpboot (1.5s)

SMP boot

• SMP boot took place
serially
• Most time in SMP boot

taken by waking each CPU
(SIPI/INIT/INIT) and
waiting for the CPU to
respond before moving to
next CPU

Parallel smpboot

• Proposed by David Woodhouse
• https://lore.kernel.org/all/20211215145633.5238-1-dwmw2@infradead.org
• Rather than kick a CPU and wait for it to come online one by one, kick them all and wait for

them to reach synchronization point
• Resolve certain dependencies
• Had issues with APIC in AMD CPUs

• Picked up later when it was occupying the largest chunk in boot time for us:
• https://lore.kernel.org/all/20230328195758.1049469-1-usama.arif@bytedance.com
• Didn’t have proper synchronization analysis
• Microcode loading didn’t meet x86 requirements

• Reworked by Thomas Gleixner (and merged!)
• https://lore.kernel.org/all/20230512203426.452963764@linutronix.de
• Included patch for reusing CPU0 delay calibrations for secondary CPUs

https://lore.kernel.org/all/20211215145633.5238-1-dwmw2@infradead.org
https://lore.kernel.org/all/20230328195758.1049469-1-usama.arif@bytedance.com
https://lore.kernel.org/all/20230512203426.452963764@linutronix.de/

Parallel SMP boot

• Kernel boot time: 2.7s -> 1s
• SMP boot time 1.7s -> 60ms

Hugepages

• Several 1G hugepages reserved at boot time for DPDK/SPDK
applications
• Effect of reserving 500 1G hugepages (worst case):

HVO (Hugepage Vmemap Optimize)

• 262144 struct pages initialized per 1G hugepage
• Memory optimization to not use struct page for every physical page

frame
• Only the first PAGE_SIZE/sizeof(struct page) (64) struct pages are

needed
• Rest of the tail pages contain same information
• HVO frees them and returns them to the buddy allocator
• Why initialize these struct pages if they are to be freed later??
• https://lore.kernel.org/linux-mm/20230913105401.519709-1-

usama.arif@bytedance.com/

https://lore.kernel.org/linux-mm/20230913105401.519709-1-usama.arif@bytedance.com/
https://lore.kernel.org/linux-mm/20230913105401.519709-1-usama.arif@bytedance.com/

HVO (Hugepage Vmemap Optimize)

• Total boot time: 3.9s -> 1.3s
• Struct page initiailization time reduced by 2.6 seconds

Specialized optimizations

• Total VM downtime (1.5-2 seconds)
• Kernel boot represents approximately 70% (1 second)

• Low latency applications like machine learning and networking still
impacted.
• p99 latency > 100ms triggers alerts on databases
• Would still be noticed by VMs deployed for public clouds?
• Can do more?

Disable purgatory in kexec

• Code that runs between the old and new kernel
• Checks SHA256 checksum of new kernel, making sure its not corrupted

• Submitted patch to disable purgatory (by default enabled)
• https://lore.kernel.org/lkml/20211206164724.2125489-1-

usama.arif@bytedance.com/
• Reduces downtime by 200ms (approx. 20% of downtime)
• Patch rejected as saving of 200ms not considered enough to justify

disabling checksum
• Probably OK in production environments where its less likely go

wrong??

https://lore.kernel.org/lkml/20211206164724.2125489-1-usama.arif@bytedance.com/
https://lore.kernel.org/lkml/20211206164724.2125489-1-usama.arif@bytedance.com/

PCI device probe skipping

• Test machine has 57 unique PCI devices
• All of them actually needed?

• Probing + adding to IOMMU groups take
time

• Only 15 needed to boot the host and
provide networking and storage to VM
• Specify in kernel command line which

devices are needed.
• 120ms to 40ms
• Disclaimer: Not general purpose.

Remaining time

• Initial struct page initialization: 110ms
• Deferred page initialization: 70ms
• ACPI operations (301ms):

• Includes AML table loads (100ms), OEM table loads, enabling interpreter (100ms),
finding idle states

Conclusion and future work

• Is the community interested in PCI whitelist/blacklist during
boot?
• Restart purgatory discussion?
• ACPI improvements?

Thanks!

