Ship your Critical Section Not Your Data:
Enabling Transparent Delegation with TCLocks

Vishal Gupta Kumar Kartikeya Dwivedi Yugesh Kothari
Yueyang Pan Diyu Zhou Sanidhya Kashyap

=PiL

Locks: MOST WIDELY used mechanism

200

—_
a1
o

1

4X

N
o

lock API() calls (x1000)
o
o

o

2002 2012 2022
Linux kernel

More locks are in use to improve OS scalability

2

Performance: Micro-benchmark

Benchmark: Each thread renames a file in a directory, serialized by a directory lock

8

2 ‘e.

M Ops/sec

- 0-0-0-90-9

- AN < o0 O 0|V <
— N |I©O oo

112

of threads
® Linux ¢ CNA

Setup: 8-socket/224-core machine

140

168

196

224

Performance decreases
with increasing core
count

NUMA-aware locks (CNA)
follow a similar trend

Traditional lock design: Large data movement

t1 t2 t3
T 4) —T—
lock()
count++ Spin
] unlock() [=%trane | / Spi
S e lock() pin
~ ~
=~ — _| Shared I
data I” _/ count++ !
[unlock() |-oCktransfer £
\ 10Ck()
~
-~ ~
~|= - — _| Shared
data [count++
unlock()
t: thread i

\J \J \J

Traditional lock design: Not ideal

t Shared data movement
8
6 /‘\" I N S
¥ 4 Yo,

CS execution time

Z -0 --0-0-9
0

— N IO 00 — < O o

- — — — «

of threads A l. ti f
® Linux ¢ CNA pplication perrormance

M Ops/sec
L)
’
@
I
A
®

Delegation-style locks

e Similar to a server-client model
o Server: Lock holder
o Client: Waits to acquire the lock

e Client ships its critical section request
in the form of a function to the server
thread

lock()
count++
unlock()

void incr_func() =
count++

send_req_to_server(&incr_func)

Delegation-style locks

Processes
client’s request

CS

CS

t

f

CS Request

>

Spin

<

g:serverthread
q:threadi
CS: critical section

Response

t

f

CS Request

e

N

Spin

<

Z

Response

Delegation-style locks

Benchmark: Each thread renames a file in a directory, serialized by a directory lock

1000

Y
- o
- o o

©
—

CS Execution Time (us

Setup:

—

o

2

"‘—.—H—.—I—l

N < 00 OV 0V <
— NI o
-

of threads
® Linux ¢ CNA = Delegation-based locks

128
168
224

8-socket/224-core machine

CS execution time similar with

increasing core count
e Minimal shared data
movement

Delegation locks require code rewrite

lock() 200
count++ =
o
unlock() = 150 t
(2}
= 4X
,0\100
5
T ~ 50
void incr_func() = ks
count++ *
2002 2012 2022
send_req_to_server(&incr_func) Linux kernel

Existing delegation-based design is impractical for Linux

TCLocks: Goals

e Transparency
o Use standard lock/unlock APIs without rewriting applications

e Delegation

o Minimal shared data movement

Transparent delegation

10

Agenda

TCLock Design
TCLock in Linux

Evaluation
Discussion

11

How to achieve transparent delegation?

e How to capture the thread’s context?
o Without application rewrite

e Where to capture the thread’s context?
o Such that only critical section is captured

e Does the waiter’s thread modify its context?
o While the server is executing waiter’s critical section

Key idea: Transparent delegation

e How to capture the thread’s context?
o Instruction pointer + stack pointer + general-purpose registers

e Where to capture the thread’s context?
o Start and end of lock/unlock API

e Does the waiter’s thread modify its context?
o No, lock waiter busy waits to acquire the lock

TCLocks: Putting it all together

Queue-based lock (Similar to gspinlock)

o List of waiters maintained as a queue

o Supports locking same lock in different contexts (Task, IRQs, NMlI)
Same lock/unlock API

Server thread batches each waiters’ request
No dedicated server thread
o Head of the queue becomes the server
o The role is transferred to the next waiter after some threshold (Batch count)

14

TCLocks in action: Phase 1

[Queue]—PCTX1 o

t: thread i
CTXi: thread i’s context

-

lock()

>

(1) Save context

LN

>

(2) Join queue

N

>

(3) Become server

J

scTx, | o ~CTX, | ofH],
tZ t3
? ?
lock() lock()

Y

(1) Save context

A

(1) Save context

AN

Y

(2) Join queue

LN

Y

(2) Join queue

AN

(3) Spin

(3) Spin

TCLocks in action: Phase 2

(o

¥

CTX, | o

2

server

L

?

(1) Switch to CTX,

(2) cs,

(3) Notify t,

CS: Critical section
p:threadi
CTXﬁthread i’s context

Spin

t
?
™
Spin
/

16

TCLocks in action: Phase 2

[Queue]—b CTX, o »{CTX, | © > CTX, O——i | |

1 3
? ?
[server) / \
| (1) switch to CTX, .
Servery/ < Spin
loop \ [(2) Cs,)
S~ @ Notifyy, oo

CS: Critical section
t: thread i
CTXi: thread i’s context

17

Agenda

e [Clockin Linux

e Evaluation
e Discussion

18

TCLocks in Linux

e How to handle:

©)

O O O O O

Waiter thread’s state modification ?
per-CPU variables ?

Nested locking ?

Out-of-order unlocking ?

Mutex ?

Reader-Writer Semaphore ?

19

TCLocks: Waiter’s thread state modification

® Ideal scenario
o Waiter’s thread does not modify its context
® Reality
o External events can modify waiter’s context
m Interrupts: Require stack access
m Waiter’s parking/wakeup mechanism: Require stack access

e Solution: Ephemeral stack
o An empty piece of memory used only during critical section execution
o Waiter’s thread switches to Ephemeral stack after saving its context
o This handles:
m Interrupts on waiter’s CPU
m Waiter’s thread parking/wakeup mechanism

20

TCLocks: per-CPU Variables

. 213 {d HISE G (void
e Kernel Assumption: o ‘{’°‘ AlEskEimnEaeal (vold)

o per-CPU variables are stable inside 215 struct folio_batch *fbatch;

.l . 216
critical section ST local_lock(&mlock_fbatch. Lock) ;
e With TCLock 218 fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
-y . . . 219 if (folio_batch_count(fbatch))
o Critical section running on different e mlock_folio. batch(Fbatch);
CPU. 221 local_unlock(&mlock_fbatch.lock);
o Different per-CPU variables are 22)
accessed.

o Is this behavior correct ?

® Yes, as long as it runs in a certain context
o I(irgs_disabled() | | current->migration_disabled) -> Run Combiner
o Otherwise, fallback to gspinlock

https://elixir.bootlin.com/linux/v6.6/source/mm/mlock.c#L217

21

TCLocks: Nested Locking

static vold __d_move(struct dentry *dentry, struct dentry *target,

e Kernel Assumption: bool exchange)
0O Multlple different |OCkS can nest /* target is not a descendent of dentry->d_parent */
. . spin_lock(&target->d_parent->d_lock);
with arbitrary depth. spin_lock_nested(2old_parent->d_lock, DENTRY_D_LOCK_NESTED);
. . } else {
o Same lock can also nest in different T Ip——
execution contexts. spin_lock(&old_parent->d_lock);
. if (p != target)
e With TCLock spin_lock_nested(&target->d_parent->d_lock,
o Server thread can become a waiter HERN A)
thread for nested lock spin_lock_nested(&dentry->d_lock, 2);

spin_lock_nested(&target->d_lock, 3);

e Solution similar to interrupt processing mechanism
o Save server thread’s context on the stack before calling the nested lock.
o Restore the server thread’s context when nested lock returns.

https://elixir.bootlin.com/linux/v6.6/source/fs/dcache.c#L2962 22

TCLocks: Out-of-order Unlocking

e Kernel Assumption: 1670

o Nested locks can be unlocked in any 122
order 1673 |

1674

e With TCLock 1675

o Server thread returns to its own | 1699

context in the unlock function. s

o It can return before the lock it held 1793

is not unlocked

e Solution: Use an array to track lock order
o Delay unlocking the out-of-order unlocked lock until the remaining locks are

unlocked.

https://elixir.bootlin.com/linux/v6.6/source/fs/splice.c#L1673

/*
* Splice contents of ipipe to opipe.
*/
static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
struct pipe_inode_info *opipe,
size_t len, unsigned int flags)

pipe_double_lock(ipipe, opipe);

pipe_unlock(ipipe);
pipe_unlock(opipe);

23

TCLocks: Mutex

e Differences from Spinlock:
o Server thread state is stored in task_struct instead of per-CPU variables.
® Restis similar to mutex in the kernel:
o Except, currently it doesn’t support: Mutex_lock_interruptable /
mutex_lock_killable.
o Itis handled same as mutex_lock.

24

TCLocks: Reader-writer semaphore

® Phase-based reader-writer lock:
o Reader phase allows all readers to proceed, while writers are waiting.
o Writer phase combines all writers using a server thread, while readers are
waiting.

25

Agenda

e FEvaluation

e Discussion

26

TCLocks: Evaluation

® Does TCLocks reduce the time spent in critical section?
e Does TCLocks improve application performance?

Hardware: 8-socket/224-core Intel machine

27

Evaluation: CS execution time

Benchmark: Each thread renames a file in a directory, serialized by a directory lock

1000) = = =, = — == —m— — — '
100 | | e

I &

I Vo I ——

—
o
|

—
.

CS Execution Time (us)

o
—_
—_—

FNQ‘R@\DCO\O#
—

\ [r——— - e e - - e s s .
of threads

® Linux ¢ CNA = TCLocks

Setup: 8-socket/224-core machine

> 4 threads
o Minimal shared data
movement

< 4 threads
o Context-switch overhead
o Not enough batching

28

Evaluation: Micro-benchmark

Benchmark: Each thread renames a file in a directory, serialized by a directory lock

g e Within a socket:
o Minimal shared data
o 6 movement
& 4
a ® Across socket:
; 2 o NUMA-aware policy
0 e 2-4cores:

o Context-switch overhead
o Not enough batching

of threads
® Linux ® CNA = TCLocks

Setup: 8-socket/224-core machine

29

Evaluation: Throughput and Latency

Benchmark: Each thread update an entry in hash-table, serialized by global spinlock

Throughput 99%ile Latency (Lock + CS+Unlock)
250 5000 o6 T
200 ,’“.‘”
2 150 500 ’s
> g ,.' e i
2 100 3 50
S 50
5

— N n ™ < O ()] N
- — — «

of threads
® Linux ¢ CNA = TCLocks

of threads
® Linux ® CNA = TCLocks

TCLocks provides better throughput with lower 99% latency.

Agenda

e Discussion

31

Discussion questions

® How to set the batching count ?
o Throughput vs Latency
e How to handle performance regression at low contention (2-4 threads) ?
o Switch between different lock mechanisms
o TCLocks already uses gspinlock for certain contexts (IRQs disabled) and
combining for others.
e How to handle CPU time accounting for server thread ?
o Server thread might eat up the CPU time while executing other waiter’s critical
section.
o Problem similar to CPU time accounting for interrupt processing.

32

Discussion questions

e How to provide current macro correctly within and outside the critical section ?
o Within a critical section, we need current of waiter’s thread on server CPU.
o Outside the critical section, we need current of server thread on server CPU.

33

Conclusion

® Existing lock design:
o Traditional lock design has more shared data movement
o Delegation-based lock design requires application modification

® TCLocks: Provides transparent delegation
o Capture thread’s context at right time
e Key takeaway:
o Applications can now use delegation-style locks without modification

https://rs3lab.github.io/TCLocks/

Thank you!

34

Backup slides

36

TCLocks: Pseudo-code

spin_lock ():

node = get_per_cpu_node()

save_context_on_node(node)

join_queue(node)

if(not head_of queue()):
While node.wait is True:

Continue

restore _context_from_node(node)
Return

while True:
gnext = get_next_thread()
switch_to(gnext)

notify(gnext)
If (batch_count_exceeded()); break

spin_unlock():
If (server_context()):

else

switch_to(server)

Lock = Unlocked

37

