
Ship your Critical Section Not Your Data:
Enabling Transparent Delegation with TCLocks

Vishal Gupta Kumar Kartikeya Dwivedi Yugesh Kothari
Yueyang Pan Diyu Zhou Sanidhya Kashyap

2

More locks are in use to improve OS scalability

4X

Locks: MOST WIDELY used mechanism

Performance: Micro-benchmark

3

Setup: 8-socket/224-core machine

● Performance decreases
with increasing core
count

● NUMA-aware locks (CNA)
follow a similar trend

Benchmark: Each thread renames a file in a directory, serialized by a directory lock

1 socket > 1 socket

Lock transfer

Lock transfer

Traditional lock design: Large data movement

4

lock()

count++

unlock()

count++

unlock()

count++

unlock()

Spin

Spin

Shared
data

t
1

t
2

t
3

t
i
: thread i

lock()

lock()

Shared
data

Traditional lock design: Not ideal

5

Application performance

Shared data movement

CS execution time

Delegation-style locks

● Similar to a server-client model

○ Server: Lock holder

○ Client: Waits to acquire the lock

● Client ships its critical section request

in the form of a function to the server

thread

6

lock()
count++
unlock()

void incr_func() =
count++

send_req_to_server(&incr_func)

Delegation-style locks

7

CS
2

Spin

CS
3

CS Request

Response
Spin

CS Request

Response

tS t2 t3

t
s
: server thread

t
i
: thread i

CS: critical section

Processes
client’s request

Setup: 8-socket/224-core machine

CS execution time similar with
increasing core count
● Minimal shared data

movement

Delegation-style locks

8

1 socket > 1 socket

Benchmark: Each thread renames a file in a directory, serialized by a directory lock

Delegation locks require code rewrite

9

lock()
count++
unlock()

void incr_func() =
count++

send_req_to_server(&incr_func)

Existing delegation-based design is impractical for Linux

4X

TCLocks: Goals

10

● Transparency
○ Use standard lock/unlock APIs without rewriting applications

● Delegation
○ Minimal shared data movement

Transparent delegation

Agenda

● Motivation
● TCLock Design
● TCLock in Linux
● Evaluation
● Discussion

11

How to achieve transparent delegation?

12

● How to capture the thread’s context?
○ Without application rewrite

● Where to capture the thread’s context?
○ Such that only critical section is captured

● Does the waiter’s thread modify its context?
○ While the server is executing waiter’s critical section

Key idea: Transparent delegation

13

● How to capture the thread’s context?
○ Instruction pointer + stack pointer + general-purpose registers

● Where to capture the thread’s context?
○ Start and end of lock/unlock API

● Does the waiter’s thread modify its context?
○ No, lock waiter busy waits to acquire the lock

TCLocks: Putting it all together

● Queue-based lock (Similar to qspinlock)

○ List of waiters maintained as a queue

○ Supports locking same lock in different contexts (Task, IRQs, NMI)

● Same lock/unlock API

14

● Server thread batches each waiters’ request

● No dedicated server thread

○ Head of the queue becomes the server

○ The role is transferred to the next waiter after some threshold (Batch count)

TCLocks in action: Phase 1

15

CTX
3Queue CTX

1
CTX

2

t
1

t
2

t
3

lock()

(1) Save context

(2) Join queue

(3) Spin

lock()

(1) Save context

(2) Join queue

lock()

(1) Save context

(2) Join queue

(3) Spin

t
i
: thread i

CTX
i
: thread i’s context

(3) Become server

TCLocks in action: Phase 2

16

CTX
3Queue CTX

1
CTX

2

t
1

t
2

t
3

Spin

server

(1) Switch to CTX
2

(2) CS
2

Spin

non-CS

CS: Critical section
t

i
: thread i

CTX
i
: thread i’s context

(3) Notify t
2

TCLocks in action: Phase 2

17

CTX
3Queue CTX

1
CTX

2

t
1

t
3

Spin

server

(1) Switch to CTX
3

CS: Critical section
t

i
: thread i

CTX
i
: thread i’s context

(2) CS
3

(3) Notify t
3

non-CS

Server
loop

Agenda

● Motivation
● TCLock Design
● TCLock in Linux
● Evaluation
● Discussion

18

TCLocks in Linux

● How to handle:
○ Waiter thread’s state modification ?
○ per-CPU variables ?
○ Nested locking ?
○ Out-of-order unlocking ?
○ Mutex ?
○ Reader-Writer Semaphore ?

19

TCLocks: Waiter’s thread state modification

20

● Ideal scenario
○ Waiter’s thread does not modify its context

● Reality
○ External events can modify waiter’s context

■ Interrupts: Require stack access
■ Waiter’s parking/wakeup mechanism: Require stack access

● Solution: Ephemeral stack
○ An empty piece of memory used only during critical section execution
○ Waiter’s thread switches to Ephemeral stack after saving its context
○ This handles:

■ Interrupts on waiter’s CPU
■ Waiter’s thread parking/wakeup mechanism

TCLocks: per-CPU Variables

21

● Kernel Assumption:
○ per-CPU variables are stable inside

critical section
● With TCLock

○ Critical section running on different
CPU.

○ Different per-CPU variables are
accessed.

○ Is this behavior correct ?

● Yes, as long as it runs in a certain context
○ ! (irqs_disabled() || current->migration_disabled) -> Run Combiner
○ Otherwise, fallback to qspinlock

https://elixir.bootlin.com/linux/v6.6/source/mm/mlock.c#L217

TCLocks: Nested Locking

22

● Kernel Assumption:
○ Multiple different locks can nest

with arbitrary depth.
○ Same lock can also nest in different

execution contexts.
● With TCLock

○ Server thread can become a waiter
thread for nested lock

● Solution similar to interrupt processing mechanism
○ Save server thread’s context on the stack before calling the nested lock.
○ Restore the server thread’s context when nested lock returns.

https://elixir.bootlin.com/linux/v6.6/source/fs/dcache.c#L2962

TCLocks: Out-of-order Unlocking

23

● Kernel Assumption:
○ Nested locks can be unlocked in any

order
● With TCLock

○ Server thread returns to its own
context in the unlock function.

○ It can return before the lock it held
is not unlocked

● Solution: Use an array to track lock order
○ Delay unlocking the out-of-order unlocked lock until the remaining locks are

unlocked.

https://elixir.bootlin.com/linux/v6.6/source/fs/splice.c#L1673

TCLocks: Mutex

24

● Differences from Spinlock:
○ Server thread state is stored in task_struct instead of per-CPU variables.

● Rest is similar to mutex in the kernel:
○ Except, currently it doesn’t support: Mutex_lock_interruptable /

mutex_lock_killable.
○ It is handled same as mutex_lock.

TCLocks: Reader-writer semaphore

25

● Phase-based reader-writer lock:
○ Reader phase allows all readers to proceed, while writers are waiting.
○ Writer phase combines all writers using a server thread, while readers are

waiting.

Agenda

● Motivation
● TCLock Design
● TCLock in Linux
● Evaluation
● Discussion

26

TCLocks: Evaluation

27

● Does TCLocks reduce the time spent in critical section?
● Does TCLocks improve application performance?

Hardware: 8-socket/224-core Intel machine

Setup: 8-socket/224-core machine

Evaluation: CS execution time

28

● > 4 threads
○ Minimal shared data

movement

● ≤ 4 threads
○ Context-switch overhead
○ Not enough batching

1 socket > 1 socket

Benchmark: Each thread renames a file in a directory, serialized by a directory lock

Evaluation: Micro-benchmark

29

● Within a socket:
○ Minimal shared data

movement

● Across socket:
○ NUMA-aware policy

● 2 - 4 cores:
○ Context-switch overhead
○ Not enough batching

1 socket > 1 socket

Setup: 8-socket/224-core machine

Benchmark: Each thread renames a file in a directory, serialized by a directory lock

3.8x
2x

Evaluation: Throughput and Latency

30

99%ile Latency (Lock + CS+Unlock)

TCLocks provides better throughput with lower 99% latency.

Throughput

52x

7x

Benchmark: Each thread update an entry in hash-table, serialized by global spinlock

Agenda

● Motivation
● TCLock Design
● TCLock in Linux
● Evaluation
● Discussion

31

Discussion questions

● How to set the batching count ?

○ Throughput vs Latency

● How to handle performance regression at low contention (2-4 threads) ?

○ Switch between different lock mechanisms

○ TCLocks already uses qspinlock for certain contexts (IRQs disabled) and

combining for others.

● How to handle CPU time accounting for server thread ?

○ Server thread might eat up the CPU time while executing other waiter’s critical

section.

○ Problem similar to CPU time accounting for interrupt processing.

32

Discussion questions

● How to provide current macro correctly within and outside the critical section ?

○ Within a critical section, we need current of waiter’s thread on server CPU.

○ Outside the critical section, we need current of server thread on server CPU.

33

Conclusion

34

● Existing lock design:

○ Traditional lock design has more shared data movement

○ Delegation-based lock design requires application modification

● TCLocks: Provides transparent delegation

○ Capture thread’s context at right time

● Key takeaway:

○ Applications can now use delegation-style locks without modification

Thank you!

https://rs3lab.github.io/TCLocks/

Backup slides

35

36

TCLocks: Pseudo-code

37

spin_lock ():
node = get_per_cpu_node()
save_context_on_node(node)
join_queue(node)
if(not head_of_queue()):

While node.wait is True:
Continue

restore _context_from_node(node)
Return

while True:
qnext = get_next_thread()
switch_to(qnext)
notify(qnext)
If (batch_count_exceeded()); break

spin_unlock():
If (server_context()):

switch_to(server)
else

Lock = Unlocked

