
Encryption for filesystems
with advanced features

Sweet Tea Dorminy

Agenda

Intro: fscrypt, motivation, extent-based
fscrypt

Extent-based encryption: status, learnings,
solutions

Future goals: more features from LUKS and
bcachefs

Intro

Advanced
filesystems?

● Not a judgement on quality, just a
convenient alias for a particular set of
features.

● Reflinks, subvolumes, snapshots,
checksums

● Btrfs, XFS, Bcachefs*

What is
fscrypt?

● Kernel library providing a standard encryption
interface across filesystems using it.

● Used on Android
● Ext4, f2fs, ceph, ubifs as yet
● One master key per directory tree
● No mixing keys within one tree
● Can delete files without their key

● Only encrypts filenames and data (vs
LUKS/dm-crypt, which encrypts everything)

● Crypto either with crypto api or blk-crypto
○ With blk-crypto, filesystem never sees

encrypted data
● struct inode embeds struct fscrypt_inode_info,

storing on disk as struct fscrypt_context:
○ Encryption is based on file + file offset
○ Key either master key+nonce applied to

plaintext, or a derived key from master key +
nonce

Difficulties for
advanced
filesystems

● No mixing keys within one tree
○ Breaks nested subvolumes with different master

keys
● Crypto either with crypto api or blk-crypto

○ With blk-crypto, filesystem never sees encrypted
data
■ Unsafe to store checksums of plaintext

● struct inode embeds struct fscrypt_inode_info,
storing on disk as struct fscrypt_context
○ Encryption is based on inode + file offset

■ One piece of data can be reflinked into two
inodes at different offsets. How to make both
inodes decrypt it successfully? Awkward…

Motivation: btrfs
● Btrfs has long wanted to have encryption, but

doesn’t want to give up checksumming or reflinking.
● By having per-subvolume encryption, individual user

homedirs can have unique keys.

Extent-based
encryption

● Still has a struct fscrypt_inode_info /
struct fscrypt_context for inodes.

● struct fscrypt_extent_context per
extent
○ Encryption is based on extent +

extent offset
○ No issue reflinking an extent into two

inodes anymore
○ Stores key, so in theory every extent

can have a different key
● Takes more metadata space usually

Current state

History

● Design 1 in Oct ‘21 by Omar Sandoval
○ Per-extent context contained nonce only
○ Encryption using master key directly only
○ Patches Jun-Oct ‘22
○ Risks of master key reuse for too much data
○ Crypto api only
○ Checksum encrypted data

● Design 2 in Nov ‘22
○ Per-extent context reusing ‘normal’

per-inode context struct
○ Patches Jan-Aug ‘23
○ Insufficiently elegant
○ Blk-crypto only
○ Checksummed unencrypted data

Current state

● Design 3 in Sep ‘23
○ Per-extent context with nonce and key (must

match inode key for now)
○ Encryption restricted to derived key from inode

context + extent nonce
○ V2 in flight by Josef Bacik
○ Doesn’t support nested subvols with different

keys or full range of key options, but enough
information is in the context to do so

○ Checksum on encrypted data via callback in
blk-crypto-fallback

○ Blk-crypto-fallback only
○ Please review:

■ https://lore.kernel.org/linux-fscrypt/cover.16
96970227.git.josef@toxicpanda.com/T/#t

Addresses
previous
difficulties

● Still doesn’t allow changing keys within one tree
○ Nested subvolumes still don’t work, but enough

info is stored to allow changing key between
inodes.

● Extent-based only with blk-crypto
○ Adds a callback to blk-crypto to allow

checksumming encrypted data
● Encryption is based on inode + extent + extent

offset
○ Addresses reflinking between inodes with the

same key, can be extended to allow reflinking
between inodes with different keys

Future goals

Bcachefs has
different
features

● Doesn’t use fscrypt
● Only one encryption key per filesystem
● Everything is encrypted: no access to

anything, even for deletion, when the key
isn’t loaded

● Authenticated encryption instead of
encryption + checksums of encrypted data

● Less options for encryption algorithm

LUKS
(dm-crypt +
dm-integrity)
has different
features

● Only one encryption key per filesystem
● Everything is encrypted: no access to

anything, even for deletion, when the key
isn’t loaded

● Authenticated encryption instead of
encryption + checksums of encrypted data

● Encryption key changes
○ Useful for repudiation or changing to a

newer encryption algorithm
● Encrypts everything

Key change
motivation

● There’s a Fedora proposal to use btrfs
encryption one day
○ initial unencrypted or encrypted image

installed on disk
○ Company or user sets new key on /,

installs own packages, sets up homedir
template

○ User sets new key for homedir
● Meta once and may again want to install

an unencrypted package in subvolume, run
in container with per-subvolume key for
anything written by package.

Key changes:
how?

● Where/how to implement?
○ btrfs has per-subvol key for new

extents, online or offline update of that
key?

○ new extents inherit inode context,
kernelspace recursively updates inode
contexts in directory tree?

○ new extents inherit inode context,
userspace recursively calls kernelspace
update of one inode context?

○ Interfaces are hard.

Authenticated
Encryption

● Detects corruption in a cryptographically
clever way, get EIO instead of corrupt data

● Store a nonce and a ‘authentication tag’
(like a checksum)

● btrfs uniquely positioned since it already
has per-block metadata (storing a
checksum).

● Currently used by dm-crypt+dm-integrity,
but not in blk-crypto at present

Authenticated
Encryption

● Complicates btrfs scrub/relocate,
NOCOW, if auth tags are needed in normal
IO path

● Plan to extend fscrypt to have a
blk-integrity tag, and have blk-crypto fill
that in with the authentication tag as
needed

Integrate into
more
filesystems?

● What keeps your filesystem from using
fscrypt?

