
Large Block Sizes in Linux

Luis Chamberlain
Pankaj Raghav
Daniel GomezGOST

Global Open Source Team

Agenda:

- Introduction to Large Block Sizes (LBS)
- Use-cases for LBS in Linux

- Enables:
- existing storage device support
- enhancing new storage device support

- Plumbing & Implementation
- Testing

Introduction

LBS in a nutshell

bs > ps

block size > page size

Reviving a 16 year old effort:
- 2007: Christoph Lamenter posted Large Block Size support

- Only page cache changes
- Added more complexity to the core VM subsystem.
- Missed an equivalent buffer-head solution

- 2007 & 2009: Nick Piggin posted fsblock & fsblock v2
- Alternative to buffer heads. Did not get much traction.
- rm fs/buffer.c
- Not the way we do development

https://lwn.net/Articles/232757/
https://lwn.net/Articles/239621/
https://lore.kernel.org/all/20090228112858.GD28496@wotan.suse.de/

Reviving a 16 year old effort:
- 2007: Christoph Lamenter posted Large Block Size support

- Only page cache changes
- Added more complexity to the core VM subsystem.
- Missed an equivalent buffer-head solution

- 2007 & 2009: Nick Piggin posted fsblock & fsblock v2
- Alternative to buffer heads. Did not get much traction.
- rm fs/buffer.c
- Not the way we do development

- 2013: NFS block layout exports → block ranges for multipage writes →
multipage buffered writes → replacement for buffer-heads: iomap

- 2017 - 2021: Matthew Wilcox with Folios → merged v4.20
- xarray and multi-index support !

- 2018: Dave Chinner xfs: Block size > PAGE_SIZE support 5 years ago
- Halted due to the ongoing folio work

https://lwn.net/Articles/232757/
https://lwn.net/Articles/239621/
https://lore.kernel.org/all/20090228112858.GD28496@wotan.suse.de/
https://lwn.net/ml/linux-fsdevel/20181107063127.3902-1-david@fromorbit.com/

Common LBS restrictions

- Main common limitation was the tight coupling of system page
size in the Page Cache

LBS in Block device context:

- Block layer can handle larger IOs. Minimum guaranteed IO size should
be logical block size.

- LBS: addressing support for
- logical block size > ps
- physical block size > ps

LBS in NVMe logical block size example:

Example of existing max LBA format size
limitation on NVMe block driver

LBA format in NVMe sets logical block size

LBS support enables future LBA formats > ps

If LBA format is 16k → logical block size → 16k

Will set the capacity to 0 today effectively
disabling these devices. If you lift this it crashes.

LBS in NVMe logical block size example:

Example of existing max LBA format size
limitation on NVMe block driver

LBA format in NVMe sets logical block size

LBS support enables future LBA formats > ps

If LBA format is 16k → logical block size → 16k

Will set the capacity to 0 today effectively
disabling these devices. If you lift this it crashes.

But bumping LBA format is radical
Maybe we don’t want that … more
on this later

LBS in File System context:
- Block size: minimum data block allocation unit in a filesystem.
- All filesystems in Linux only support bs <= ps
- xfs example case for LBS
- other filesystems

- TBD

Without LBS
- You can create filesystems with bs > ps
- Cannot mount bs > ps

LBS use case types

- Works on all existing storage devices and block drives
– HDDs, SATA SSDs, scsi,etc

- LBA formats:
- 512 byte
- 4k

- Enhance new technology and new storage device experience

- LBS proof of concepts:
- qemu with LBA format > 4k
- qemu with NVMe hacks

Existing device use case: testing, forensics, recovery:
- Systems with PAGE_SIZE > 4k are not easily available to many developers

- Test filesystem bugs with larger block sizes on x86
- Extract files with larger block sizes on x86

- Example: a poor sole waiting 6 years for a resolution (post on serverfault)

May 20, 2011
Patriot PCNASJV35S4 Diskless System
Javelin S4 4-Bay Media Server

● 800MHz AMCC PowerPC processor
○ PPC 440 supported different page sizes:

■ 1KB, 4KB, 16KB, 64KB, 256KB, 1MB, 16MB and
256MB

● 4 SATA HDDs
● 256MB RAM
● xfs with 64k block size

https://serverfault.com/questions/852833/getting-files-out-of-xfs-with-64kb-block-size

Existing device use case: writes are typically large
- Under some workloads you may only want to deal with files >= 16k
- Large folios are used today with or without LBS:

- readahead
- iomap write path

- However LBS will ensure no small writes for inodes for data are ever issued

Lessons from databases:
- Databases already work on bigger internal page sizes

- MySQL default page size has been 16KB for InnoDB for a long time
- Databases would prefer all or nothing transaction (no torn writes)
- Most databases uses Direct IO to circumvent the torn writes issue.

- Hyperscalers have innovated with large atomics for this reason
- Some databases only have Buffered IO support - PostgreSQL

- Jonathan Katz: “Direct I/O is a long-term feature in the works. It will take years
 to implement. It’s a complex problem.”

November 9, 2023 - Open Source Summit Spain
- LBS support enables databases to use large filesystem block sizes with buffered IO

- No new device support is required for buffered-IO LBS support
- However new devices with larger atomics would be nice

67108864

New device use case: High Capacity SSDs:
- Indirection Unit provides internal logical to physical mapping of LBAs in an SSD.
- Most SSDs available in the market have 4k IUs.
- High capacity SSDs are using larger IU to increase capacity and reduce DRAM costs

- Writes aligned to IU will provide best performance

New device use case: High Capacity NVMe SSDs:
- Example device:

- 4k LBA format
- nawupf >= npwg > ps → where vendors can enable large atomics
- LBS device with

- 4k logical block size but a larger preferred write granularity and atomic support
- Backwards compatible

Where LBS is not great:
- LBS is not suitable for all workloads

- Smaller IOs with LBS can cause write amplification (WAF) due to read modify writes
- But if you do a large write on a 4k bs filesystem writes are not restricted to only 4k,

typically larger IOs are used
- Do your WAF homework, IO volume count is what matters
- LBS is suitable to store large data that can be processed in larger IO chunks.

Plumbing

LBS plumbing:

- Historically, page cache was closely tied to a PAGE.
- No support to track the “blocks” (filesystem or block device) > page size as a

single unit in the page cache to avoid eviction of partial blocks.

LBS plumbing:

The important reason to need large folios to support large drive
block sizes is that the block size is the minimum I/O size. That
means that if we're going to write from the page cache, we need the
entire block to be present. We can't evict one page and then try to
write back the other pages -- we'd have to read the page we evicted
back in. So we want to track dirtiness and presence on a per-folio
basis; and we must restrict folio size to be no smaller than block
size.

- Historically, page cache was closely tied to a PAGE.
- No support to track the “blocks” (filesystem or block device) > page size as a

single unit in the page cache to avoid eviction of partial blocks.

Willy on LBS support:

https://lwn.net/Articles/945987/

Page cache before:

PAGE_SIZE

- Historically, page cache was closely tied to a PAGE.

Page cache at the moment:

PAGE_SIZE Large folio

- Large folio support has been added to the page cache.
- Readahead can use large folios if the filesystem supports it.

- XFS, shmem, AFS and EROFS
- Since 6.6, XFS buffered writes can also use a large folios.

- Historically, page cache was closely tied to a PAGE.

Page cache at the moment: 4k PAGE_SIZE

PAGE_SIZE Large folio

- folio index: offset >> PAGE_SHIFT
- 12 >> 12 → 0
- 4095 >> 12 → 0
- 4096 >> 12 → 1
- 16384 >> 12 → 4
- 32677 >> 12 → 7

0 1 2 3 4 5 6 7 10 11 12 13

Address space mapping page index example: 48k file

offset: 16384offset: 16383

- index 4- 7 will return the same folio
- This is one feature which xarray multi-index

support allows
- One folio on multiple indexes
- index must be aligned to the folio order

offset: 32767 offset: 32768

Missing piece in the puzzle for LBS XFS:

Large folio support in the page cache

Large folio support in IOMAP

Missing piece in the puzzle for LBS XFS:

Large folio support in the page cache

Large folio support in IOMAP

the main blocker why bs > ps could not work on XFS was due to the
limitation in page cache: `filemap_get_folio(FGP_CREAT) always
allocate at least filesystem block size`

- Dave chinner on LBS support for XFS:

Missing piece in the puzzle for LBS XFS:

Large folio support in the page cache

Large folio support in IOMAP

Minimum folio order in page
cache

the main blocker why bs > ps could not work on XFS was due to the
limitation in page cache: `filemap_get_folio(FGP_CREAT) always
allocate at least filesystem block size`

- Dave chinner on LBS support for XFS:

Page cache with min_order folio support:

Min order folio

- Folios added to the page cache will be at least with a minimum order.

Min order folio

Page cache with min_order folio support:

Min order folio

- Folios added to the page cache will be at least with a minimum order.
- Filesystems can set the min_order of the page cache while setting up an

inode.

Min order folio

Page cache with min_order folio support:

Min order folio

- Folios added to the page cache will be at least with a minimum order.
- Filesystems can set the min_order of the page cache while setting up an

inode.
- min_order typically corresponds to the FSB for filesystems or logical block

size if it is block cache.

Min order folio

Page cache with 4k PAGE_SIZE and min_order 2:

PAGE_SIZE Minimum folio order for 16k bs

0 1 2 3 4 5 6 7 10 11 12 13

Address space mapping page index example: 48k file

offset: 16384offset: 16383 offset: 32767 offset: 32768

- A folio index must always aligned to the minimum order

Scope of this work:
- folios and xarray multi-index page cache surgery by Matthew Wilcox already removed

the assumption of page size
- We build on this:

- Add LBS support by re-using using xarray multi-index support for a
minimum address space mapping order requirement.
- Used for inode allocation

- Adds API to control minimum folio order in the page cache

Scope of this work:
- folios and xarray multi-index page cache surgery by Matthew Wilcox already removed

the assumption of page size
- We build on this:

- Add LBS support by re-using using xarray multi-index support for a
minimum address space mapping order requirement.
- Used for inode allocation

- Adds API to control minimum folio order in the page cache
- Enable LBS support in XFS.

- Most heavy lifting already done by the community by it using iomap and
supporting multiple block sizes

- Minor filesystem changes on our side
- fstests gives a good test bed to stress test the page cache and shake out all the

bugs.

Implementation

API to set minimum folio order:

API to set minimum folio order:

Bit 8 Bit 18
 0 <= Min order < 32 0 <= Max order < 32

Usage:

- Set the preferred minimum order while allocating a folio in the page
cache during the initialization of inodes.

Changes to allocation and placement:
- filemap_alloc_folio always with at least min order and filemap_add_folio at

index aligned to the min order.

Min order folio Min order folio

Changes in readahead:
- Readahead uses a heuristic to read things ahead of needing them
- It’s algorithm is archaic, and could be improved, but we just need it

to work
- Readahead allocates folios and moves the index accordingly

- These moves and shifts must account for the minimum order

Last read New readahead-window

Old read-ahead window

Data not read yet

Changes in truncate:

minimum order

Partial folio
truncate

- Partial truncate on a large folio can result in splitting. (truncate_inode_partial_folio())
- Do not split a folio which has a minimum order that needs to be maintained.
- Truncate it completely or do not truncate.

Hidden surprises in IOMAP direct IO path:
- iomap_dio_zero() will pad a FSB with zeroes if the direct IO size < FSB.
- Uses boot time allocated ZERO_PAGE to zero out.

FSB

LBA

Direct IO IOMAP zero out

- Hidden assumption that block size <= PAGE_SIZE.

Testing

IO distribution analysis with FIO:
- Preliminary analysis to verify IO size with LBS support in XFS.
- Baseline is ext4 with bigalloc and XFS with default block size(4k).
- FIO job with 64k IO block size:

$ fio --directory=/mnt/ --bs=64k --ioengine=io_uring
--rw=randwrite --size=50G --create_on_open=1 --nrfiles=10
--fsync_on_close=1 --name=yolo

- This is an ideal workload. More of a litmus test.
- More real world benchmarks to needs to be performed.

IO distribution analysis with FIO:

 NVMe Driver
nvme_core

 NVMe Device

 eBPF

 FS

 FIO

FS Filesystem Block Size
EXT4 4k with Cluster size 64k(bigalloc)

XFS 4k
XFS with LBS support 64k

 bpftrace

nvmeblk.bt

IO distribution analysis with FIO:

 NVMe Driver
nvme_core

 NVMe Device

 eBPF

x86_64
VM(qemu)

RAM 16GB

Storage
(NVMe)

capacity: 3.76TB

LBA size: 4k

MDTS: 256k

Kernel version v6.6-rc5

 FS

 FIO

FS Filesystem Block Size
EXT4 4k with Cluster size 64k(bigalloc)

XFS 4k
XFS with LBS support 64k

 bpftrace

nvmeblk.bt

The 4k IOs in XFS with 64k
block size is coming from
metadata writes(xfsaild)

Building Linux

x=100
perf stat --repeat $x \
--pre 'make -s mrproper defconfig' \
-- make -s -j$(nproc) bzImage

Building Linux

- Intel Xeon Gold 6438Y+
- nproc: 128
- 1 TiB Memory

Building Linux

- Intel Xeon Gold 6438Y+
- nproc: 128
- 1 TiB Memory

Building Linux

- AWS c7a.metal-48xl
- AMD EPYC 9R14
- 192 VCPUS but bare metal??
- 384 GiB RAM

AMD EPYC 9R14 - No PTE Coalescing fail :(

mcgrof@amd /mnt-xfs-16k/linux (git::master)$ /home/mcgrof/build-pg-v1.sh

 Performance counter stats for 'make -s -j96 bzImage' (2 runs):

 46513784329 ns duration_time (+- 0.74%)
 1051852925250 ns user_time (+- 0.01%)
 935936429750 ns system_time (+- 0.10%)
 52656536 page-faults (+- 0.02%)
 264 major-faults (+- 0.19%)
 52656272 minor-faults (+- 0.02%)
...
 0 bp_l1_tlb_miss_l2_tlb_miss.coalesced_4k (19.94%)
...
 0 ls_l1_d_tlb_miss.tlb_reload_coalesced_page_hit (20.33%)
 0 ls_l1_d_tlb_miss.tlb_reload_coalesced_page_miss (20.34%)

AMD TLB Coalescing on

AWS c7a.metal-48xl
“Bare metal” ?

Building Linux

- AWS c7a.8xlarge
- AMD EPYC 9R14
- 32 VCPUs
- 64 GiB RAM

Building Linux

- Needs more evaluation

Device test matrix

- Plenty to test!
- First focus on avoiding regressions
- Testing 512 LBA and 4k LBA
- Even though larger LBAs are

functional as tested with qemu

XFS test profile matrix
Baseline profiles

1. xfs_crc
2. xfs_crc_logdev
3. xfs_crc_rtdev
4. xfs_crc_rtdev_extsize_28k
5. xfs_crc_rtdev_extsize_64k
6. xfs_crc_logdev_rtdev
7. xfs_nocrc
8. xfs_nocrc_512
9. xfs_nocrc_1k

10. xfs_nocrc_2k
11. xfs_nocrc_4k
12. xfs_reflink
13. xfs_reflink_1024
14. xfs_reflink_normapbt
15. xfs_reflink_stripe_len
16. xfs_reflink_nrext64
17. xfs_reflink_logdev
18. xfs_reflink_2k
19. xfs_reflink_4k
20. xfs_reflink_dir_bsize_8k

 New LBS profiles
1. xfs_nocrc_16k
2. xfs_nocrc_16k_4ks
3. xfs_nocrc_32k
4. xfs_nocrc_32k_4ks
5. xfs_nocrc_64k
6. xfs_nocrc_64k_4ks
7. xfs_reflink_16k
8. xfs_reflink_16k_4ks
9. xfs_reflink_32k

10. xfs_reflink_32k_4ks
11. xfs_reflink_64k
12. xfs_reflink_64k_4ks

Plenty to test!

Kdevops fstests testing

- kdevops allows you to get a test rig for all this up in about 20-30 minutes
- You’ll need about 4 TB drive for all test baseline profiles
- 4 GiB per guest x 20 >= 80 GiB RAM

- Have not needed yet more for LBS – surprising result
- Our initial priority: detect regressions fast
- Pick a baseline kernel target: v6.6-rc5
- Get baseline
- Build huge confidence in baseline

- Objecive: 100 loops of fstests without no new failures
- Means we will report bugs
- SOAK_DURATION=9900

kdevops v6.6-rc5 baseline xfs bug hunting screenshot
Every 60.0s: ./scripts/workflows/fstests/fstests_watchdog.py hosts baseline
deb-server-666-number-of-the-beast: Wed Nov 8 20:11:57 2023

 Hostname Test-name Completion % runtime(s) last-runtime(s) Stall-status Kernel
 base-xfs-crc generic/642 1% (soak) 60 11028 OK 6.6.0-rc5
 base-xfs-crc-logdev generic/601 100% 6 6 OK 6.6.0-rc5
 base-xfs-crc-rtdev generic/591 175% 7 4 OK 6.6.0-rc5
 base-xfs-crc-rtdev-extsize-28k generic/642 103% (soak) 10788 10505 OK 6.6.0-rc5
 base-xfs-crc-rtdev-extsize-64k generic/531 31395% 11616 37 Hung-Stalled 6.6.0-rc5
 base-xfs-crc-logdev-rtdev None 0% 0 0 OK 6.6.0-rc5
 base-xfs-reflink generic/476 79% (soak) 9132 11556 OK 6.6.0-rc5
 base-xfs-reflink-normapbt generic/476 91% (soak) 9138 10069 OK 6.6.0-rc5
 base-xfs-reflink-stripe-len generic/476 79% (soak) 8347 10500 OK 6.6.0-rc5
 base-xfs-reflink-nrext64 generic/476 72% (soak) 8491 11799 OK 6.6.0-rc5
 base-xfs-reflink-logdev generic/476 74% (soak) 8527 11546 OK 6.6.0-rc5
 base-xfs-reflink-1024 generic/476 59% (soak) 6831 11608 OK 6.6.0-rc5
 base-xfs-reflink-2k generic/476 69% (soak) 7956 11508 OK 6.6.0-rc5
 base-xfs-reflink-4k generic/476 72% (soak) 8610 11901 OK 6.6.0-rc5
 base-xfs-reflink-dir-bsize-8k generic/476 77% (soak) 8956 11603 OK 6.6.0-rc5
 base-xfs-nocrc None 0% 0 0 OK 6.6.0-rc5
 base-xfs-nocrc-512 None 0% 0 0 OK 6.6.0-rc5
 base-xfs-nocrc-1k None 0% 0 0 OK 6.6.0-rc5
 base-xfs-nocrc-2k None 0% 0 0 OK 6.6.0-rc5
 base-xfs-nocrc-4k None 0% 0 0 OK 6.6.0-rc5

v6.6-rc5 upstream baseline xfs results so far…

- Baseline confidence: ~ 25 full loops of running fstests
- All fstests results kept in tarballs on kdevops git tree
- All failures itemized as expunges, crashes/hangs in github gists
- Approximate failure rate notation: F:1/20 fails about ~ 1/20 times
- 443 known failed tests, 47 crashes

v6.6-rc5 upstream baseline xfs results so far…

- Baseline confidence: ~ 25 full loops of running fstests
- All fstests results kept in tarballs on kdevops git tree
- All failures itemized as expunges, crashes/hangs in github gists
- Approximate failure rate notation: F:1/20 fails about ~ 1/20 times
- 443 known failed tests, 47 crashes
- Assertion failed: ip->i_nblocks == 0, file: fs/xfs/xfs_inode.c
- Assertion failed: (irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0

- xfs_inodegc_worker() → xfs_ifree()|xfs_ixset()
- hung tasks:
- xfs_log_unmount()
- iomap_writepages() → xfs_buf_read_map()
- …

v6.6-rc5 upstream baseline xfs results so far…

- Rare flaky crashes as well such as:
- invalidate_inode_pages2_range() crash
- buffered IO + async DIO - this is stupid to do anyway but we support it (™)
- VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio)

- F:1/1604
- fsstress + compaction crashes → means we should add a new test

- readahead triggered alloc + compaction
- F:1/20

v6.6-rc5 upstream LBS results so far

v6.6-rc5 upstream LBS results so far

Few actual LBS related issues, few tests bugs in light of LBS
xfs/599: # of xattrs based on block size - reported - no feedback yet

n=16k takes 5 seconds
n=32k takes 30 seconds
n=64k takes 6-7 minutes
n=1048576 takes 30 hours

https://lore.kernel.org/fstests/ZULu%2FRm%2FEiBY8ZzG@bombadil.infradead.org/T/#u

v6.6-rc5 upstream LBS results so far

Few actual LBS related issues, few tests bugs in light of LBS
xfs/599: # of xattrs based on block size - reported - no feedback yet

n=16k takes 5 seconds
n=32k takes 30 seconds
n=64k takes 6-7 minutes
n=1048576 takes 30 hours

Some tests need to be fixed for larger block sizes (without LBS)

https://lore.kernel.org/fstests/ZULu%2FRm%2FEiBY8ZzG@bombadil.infradead.org/T/#u

v6.6-rc5 upstream LBS results so far

Few actual LBS related issues, few tests bugs in light of LBS
xfs/599: # of xattrs based on block size - reported - no feedback yet

n=16k takes 5 seconds
n=32k takes 30 seconds
n=64k takes 6-7 minutes
n=1048576 takes 30 hours

Some tests need to be fixed for larger block sizes (without LBS)

Not yet done with testing but… zero regressions detected so far

https://lore.kernel.org/fstests/ZULu%2FRm%2FEiBY8ZzG@bombadil.infradead.org/T/#u

LBS next steps

- Finish testing minorder patches
- Post patches
- Block device cache:

- dynamic aops not ideal - patches posted
- iomap buffer-head compatibility suggested instead → requires work
- buffer-head large folio support from Hannes

- not ideal unless we have a real filesystem to help test this
- Other filesystem, filesystem developers decide:

- gfs2 seems like a good next target due to interest by Andreas
- Lift NVMe restrictions - already implemented

Concerns

Fragmentation concerns

- Thesis:
- reclaim should address concerns:

- As you allocate large folios these same large folios will be
available after reclaim for use

- Should not starve 4k
- Testing thesis should be possible now

Fragmentation concerns
- I asked for simple memory fragmentation measurement
- Proposal suggested by John Hubbard:
- a) Let BLOCKS be the number of 4KB pages (or more generally, then

number of smallest sized objects allowed) in the area.
- b) Let FRAGS be the number of free or allocated chunks (no need to

consider the size of each, as that is automatically taken into
consideration).

- Then:
 fragmentation percentage = (FRAGS / BLOCKS) * 100%

- Memory compaction for high order folios RFC from Zi Yan patches
posted.

https://lore.kernel.org/linux-mm/20230912162815.440749-3-zi.yan@sent.com/T/#m14f1315e7d14d6c26b7f14adbfa2d442c1fe7143

Interested?

Call for action:
- Let’s chat, come talk
- Review of our patches
- Help test
- Join our monthly LBS virtual zoom cabal to coordinate

- Next one: December 5pm PST / 10am Japan
- Just email us if interested

- Discord kdevops server #large-block

Questions?

