

Powering up “discoverable bus-attached”
devices on DT-based platforms

… or how not all buses are created equal.

“Discoverable buses that aren’t quite discoverable…”
Linus Walleij

● Linaro engineer working on Qualcomm upstream support

● Involved in upstreaming a couple of recently announced Qualcomm platforms

● Maintainer of NXP’s i.MX clocks

● Enjoy understanding HW inner bits from a kernel hacking perspective

● First time attendee at LPC

Who am I ?

● Introduction

● X13s: Wi-Fi & Bluetooth use case

● Power sequencing Subsystem

● USB Onboard-hub approach

● Conclusion

Outline

Introduction

Why talk about this?

What’s a discoverable bus?

What’s a non-discoverable bus?

What’s a “DT-based” platform?

What’s the problem?

X13s: Wi-Fi & Bluetooth
use case

● Qualcomm FastConnect 6900 Series - Wi-Fi & Bluetooth (WCN6855)

● Qualcomm Power Management IC (PM8350)

● Qualcomm Snapdragon 8cx Gen 3 Compute Platform (SC8280XP)

SC8280XP

PM8350

PCIe

UART

VDD supplies

SPMI

* simplified “schematics” derived from the upstream DT

Wi-Fi BT

WCN6855
SWCTRL GPIO

EN GPIO

X13s: PCIe Wi-Fi & UART Bluetooth

regulators-0 {

 compatible = "qcom,pm8350-rpmh-regulators";

 qcom,pmic-id = "b";

 ...

 vreg_s12b: smps12 {

regulator-name = "vreg_s12b";

regulator-min-microvolt = <984000>;

regulator-max-microvolt = <984000>;

regulator-initial-mode = <RPMH_REGULATOR_MODE_HPM>;

 };

 ...

};

X13s: PM8350 - regulators devicetree node

&uart2 {

 status = "okay";

 bluetooth {

 compatible = "qcom,wcn6855-bt";

 vddio-supply = <&vreg_s10b>;

 vddbtcxmx-supply = <&vreg_s12b>;

 vddrfacmn-supply = <&vreg_s12b>;

 vddrfa0p8-supply = <&vreg_s12b>;

 vddrfa1p2-supply = <&vreg_s11b>;

 vddrfa1p7-supply = <&vreg_s1c>;

 enable-gpios = <&tlmm 133 GPIO_ACTIVE_HIGH>;

 swctrl-gpios = <&tlmm 132 GPIO_ACTIVE_HIGH>;

 ,,,

 };

};

X13s: Enable Bluetooth in devicetree

$ dmesg |grep Bluetooth

[1.951305] Bluetooth: hci0: setting up wcn6855

[2.022866] Bluetooth: hci0: Frame reassembly failed (-84)

[2.078940] Bluetooth: hci0: QCA Product ID :0x00000013

[2.078945] Bluetooth: hci0: QCA SOC Version :0x400c0210

[2.078946] Bluetooth: hci0: QCA ROM Version :0x00000201

[2.078947] Bluetooth: hci0: QCA Patch Version:0x000038e6

[2.087204] Bluetooth: hci0: QCA controller version 0x02100201

[2.087207] Bluetooth: hci0: QCA Downloading qca/hpbtfw21.tlv

[2.585998] Bluetooth: hci0: QCA Downloading qca/hpnv21.bin

[2.737875] Bluetooth: hci0: QCA setup on UART is completed

$

X13s: Bluetooth device probing

● “Discovery” initiated by the Geni SE controller

● Loops through all child nodes of the controller devicetree node

● Registers each available node as a device

● Device can be powered off entirely

 geni_se_probe()

 -> devm_of_platform_populate()

 -> of_platform_bus_create()

 -> of_platform_device_create_pdata()

 -> of_device_add()

 -> device_add()

X13s: Bluetooth - device “discovery”

&pcie4 {

 vddpe-3v3-supply = <&vreg_wlan>;

 status = “okay”;

};

&pcie4_phy {

 vdda-phy-supply = <&vreg_l6d>;

 vdda-pll-supply = <&vreg_l4d>;

 status = "okay";

};

X13s: Enable PCIe instance in devicetree

$ dmesg |grep ath11k
$

😭

X13s: Wi-fi device probing

&pcie4 {

...

pcie@0 {

 device_type = "pci";

 reg = <0x0 0x0 0x0 0x0 0x0>;

 bus-range = <0x01 0xff>;

 wifi@0 {

compatible = "pci17cb,1103";

 reg = <0x10000 0x0 0x0 0x0 0x0>;

 };

};

};

X13s: Enable PCIe instance in devicetree

 wifi@0 {

compatible = "pci17cb,1103";

reg = <0x10000 0x0 0x0 0x0 0x0>;

vddio-supply = <&vreg_s10b>;

vddbtcxmx-supply = <&vreg_s12b>;

vddrfacmn-supply = <&vreg_s12b>;

vddrfa0p8-supply = <&vreg_s12b>;

vddrfa1p2-supply = <&vreg_s11b>;

vddrfa1p7-supply = <&vreg_s1c>;

enable-gpios = <&tlmm 133 GPIO_ACTIVE_HIGH>;

swctrl-gpios = <&tlmm 132 GPIO_ACTIVE_HIGH>;

 };

X13s: Enable PCIe instance in devicetree

$ dmesg |grep ath11k
$

😭

X13s: Wi-fi device probing

regulators-0 {

 compatible = "qcom,pm8350-rpmh-regulators";

 qcom,pmic-id = "b";

 ...

 vreg_s12b: smps12 {

regulator-name = "vreg_s12b";

regulator-min-microvolt = <984000>;

regulator-max-microvolt = <984000>;

regulator-initial-mode = <RPMH_REGULATOR_MODE_HPM>;

regulator-always-on;

 };

 ...

};

X13s: PM8350 - regulators devicetree node

$ dmesg |grep ath11k
[1.800111] ath11k_pci 0006:01:00.0: BAR 0: assigned [mem ...
[1.800184] ath11k_pci 0006:01:00.0: enabling device (0000 -> 0002)
[1.814757] ath11k_pci 0006:01:00.0: MSI vectors: 32
[1.814781] ath11k_pci 0006:01:00.0: wcn6855 hw2.1
[2.859800] ath11k_pci 0006:01:00.0: chip_id 0x2 chip_family 0xb ...
[2.859813] ath11k_pci 0006:01:00.0: fw_version 0x110b196e ...
[3.216708] ath11k_pci 0006:01:00.0 wlP6p1s0: renamed from wlan0
$

X13s: Wi-fi device probing

● Discovery initiated by the PCI host controller

● Loops through all slots by reading over the bus

● Registers only devices accessible

● Device needs to be powered on

 qcom_pcie_probe()

 -> dw_pcie_host_init()

 -> pci_host_probe()

 -> pci_scan_child_bus_extend()

 -> pci_scan_slot()

 -> pci_scan_single_device()

 -> pci_device_add()

 -> device_add()

X13s: Wi-fi - device discovery

Platform device

“Discovery” is based on

devicetree node, no bus scanning

Can be completely powered off during

discovery

Devicetree compatible string used for

driver matching

Pci device

Discovery is based on

bus scanning, devicetree ignored

Needs to be powered on for discovery

Devicetree compatible string used for

device matching

X13s: Bluetooth vs Wi-fi - device discovery

static int qca_power_on(struct hci_dev *hdev)

{

...

ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);

...

ret = clk_prepare_enable(qcadev->susclk);

...

msleep(50);

gpiod_set_value_cansleep(qcadev->bt_en, 1);

msleep(50);

sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);

...

}

X13s: Bluetooth power up sequence

Power Sequencing Subsystem

● “... handles complex power sequences, typically useful for

subsystems that make use of discoverable buses …”

● Initially proposed as dedicated subsystem in 2014

● Merged in v4.0 as part of MMC subsystem

● Respun as a dedicated subsystem in 2021
○ NACKed, mainly due to bindings

○ discoverable buses generic implementation need to control the pwrseq device before

discovery

○ pwrseq as property of the bus controller might not be HW accurate

Power Sequencing Subsystem

Power Sequencing - provider

struct pwrseq_ops {

int (*pre_power_on)(struct pwrseq *pwrseq);

int (*power_on)(struct pwrseq *pwrseq);

void (*power_off)(struct pwrseq *pwrseq);

void (*reset)(struct pwrseq *pwrseq);

};

struct pwrseq *pwrseq_create(struct device *dev, struct module *owner, const

 struct pwrseq_ops *ops)

struct pwrseq_provider *__of_pwrseq_provider_register(struct device *dev,

 struct module *owner,

 struct pwrseq * (*of_xlate)(void *data,

 struct of_phandle_args *args)

Power Sequencing - consumer

struct pwrseq *__must_check devm_pwrseq_get(struct device *dev,

 const char *id)

static inline int pwrseq_pre_power_on(struct pwrseq *pwrseq)

static inline int pwrseq_power_on(struct pwrseq *pwrseq)

static inline void pwrseq_power_off(struct pwrseq *pwrseq)

static inline void pwrseq_reset(struct pwrseq *pwrseq)

&uart2 {

 status = "okay";

 bluetooth {

 compatible = "qcom,wcn6855-bt";

 vddio-supply = <&vreg_s10b>;

 vddbtcxmx-supply = <&vreg_s12b>;

 vddrfacmn-supply = <&vreg_s12b>;

 vddrfa0p8-supply = <&vreg_s12b>;

 vddrfa1p2-supply = <&vreg_s11b>;

 vddrfa1p7-supply = <&vreg_s1c>;

 enable-gpios = <&tlmm 133 GPIO_ACTIVE_HIGH>;

 swctrl-gpios = <&tlmm 132 GPIO_ACTIVE_HIGH>;

 ,,,

 };

};

X13s: Enable Bluetooth in devicetree

&uart2 {

 status = "okay";

 bluetooth {

 compatible = "qcom,wcn6855-bt";

 bt-pwrseq = <&pwrseq 0>;

 ,,,

 };

};

X13s: Enable Bluetooth in devicetree

USB onboard hub approach

● Merged in v6.0

● Solves the powering up via separate platform device
○ platform device “discovered” based on devicetree node - in charge with powering up the hub

○ usb device discovered based on USB bus scan - takes care of the rest

○ sysfs link between platform device and usb device

● Platform driver implements power related API - USB driver uses it
○ both drivers implemented in the same file

The USB onboard hub approach

Conclusion

● Discoverable buses don’t use DT node for discovery

○ Devices don’t get discovered if they are powered off

○ Such buses lack support for powering up devices before discovery

○ Resources kept always enabled

● Dedicated Power sequencing subsystem useful, but optional

○ Takes the control of resources out of the consumer’s hands

○ Resources needed for powering up the device can be shared between multiple devices

○ Sometimes there is no dedicated pwrseq device

● USB onboard hub approach can be useful, but hacky

○ Extra platform device and driver needed

○ Shares power related API with bus specific driver

Thank you

● https://lore.kernel.org/all/20211006035407.1147909-1-dmitry.baryshkov@linaro.org/

● https://lwn.net/Articles/602855/

● https://www.uwsg.indiana.edu/hypermail/linux/kernel/1406.2/03144.html

● https://lore.kernel.org/all/20230110172954.v2.1.I75494ebee7027a50235ce4b1e930fa73a578fbe2@changeid/

Resources

https://lore.kernel.org/all/20211006035407.1147909-1-dmitry.baryshkov@linaro.org/
https://lwn.net/Articles/602855/
https://www.uwsg.indiana.edu/hypermail/linux/kernel/1406.2/03144.html
https://lore.kernel.org/all/20230110172954.v2.1.I75494ebee7027a50235ce4b1e930fa73a578fbe2@changeid/

